Worldwide efforts to illuminate the behavior of multiple-phase liquid are frequently focused on oil-in-water emulsions. With the aim to reveal the machanism of the film formation of aqueouse emulsion in confinement, we observed the behavior of O/W confined in a nanogap. We have observed the oil pool formed surrounding the contact area in the inlet, derived from the oil film adhered on the solid surfaces, as well as the research into how the oil pool changes with rolling speed and feeding mode. Two regions have been found in the outlet area, which are defined as vaccum region and turn-round region. Small droplets have been observed to turn round in the turn-round region, with a diminishing droplet-size distribution. Moreover, by employing two different feeding modes, we have demonstrated a suprising discovery diametrically opposed to the traditional concept. The film formation has been detedcted to be distinctly enhanced under an insufficient feeding condition compared to the situation under a sufficient feeding condition. The unusual performance leads to an strong evidence of the reemulsification concept. Here, we demonstrate, directly from experimentally observations of emulsion behaivors, that the film formation of emulsion is significantly affected by the droplet behavior.

This content is only available via PDF.
You do not currently have access to this content.