The lubricant applied to the disk in a hard drive is a critical component for head-disk interface reliability. In Heat Assisted Magnetic Recording (HAMR), the heat supplied to the disk by the laser will add new thermal considerations to lubricant performance. Investigations into how the lubricant behaves at the small time and length scales seen in HAMR systems need to be conducted numerically. Published works on HAMR lubricant modeling have considered only the van der Waals contribution to disjoining pressure, commonly called the dispersive component, and do not consider the film thickness dependence of viscosity. However, lubricants with reactive end groups such as Fomblin Zdol are widely used, and such simple disjoining pressure and viscosity models do not capture certain lubricant behavior. We have developed a simulation tool that incorporates film thickness dependencies of viscosity and polar and dispersive disjoining pressure into a continuum lubrication model. We investigate the effect of initial thickness on lubricant flow and evaporation under HAMR write conditions considering both components of disjoining pressure and thin-film viscosity. Simulation results indicate the effect of including polar disjoining pressure depends on the initial lubricant thickness. The inclusion of viscosity thickness dependence does not affect simulation results under scanning laser conditions but will be important in reflow simulations.
Skip Nav Destination
ASME/STLE 2012 International Joint Tribology Conference
October 7–10, 2012
Denver, Colorado, USA
Conference Sponsors:
- Tribology Division
ISBN:
978-0-7918-4508-0
PROCEEDINGS PAPER
Lubricant Flow and Evaporation Model for Heat Assisted Magnetic Recording Systems Including Reactive End-Group Effects and Thin-Film Viscosity
Joanna E. Bechtel,
Joanna E. Bechtel
University of California at Berkeley, Berkeley, CA
Search for other works by this author on:
David B. Bogy
David B. Bogy
University of California at Berkeley, Berkeley, CA
Search for other works by this author on:
Joanna E. Bechtel
University of California at Berkeley, Berkeley, CA
David B. Bogy
University of California at Berkeley, Berkeley, CA
Paper No:
IJTC2012-61167, pp. 347-349; 3 pages
Published Online:
July 26, 2013
Citation
Bechtel, JE, & Bogy, DB. "Lubricant Flow and Evaporation Model for Heat Assisted Magnetic Recording Systems Including Reactive End-Group Effects and Thin-Film Viscosity." Proceedings of the ASME/STLE 2012 International Joint Tribology Conference. ASME/STLE 2012 International Joint Tribology Conference. Denver, Colorado, USA. October 7–10, 2012. pp. 347-349. ASME. https://doi.org/10.1115/IJTC2012-61167
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Related Chapters
Insulating Properties of W-Doped Ga2O3 Films Grown on Si Substrate for Low-K Applications
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Microstructure Evolution and Physics-Based Modeling
Ultrasonic Welding of Lithium-Ion Batteries
Materials
Design and Application of the Worm Gear