The dynamic response of a spinning Timoshenko beam with general boundary conditions and subjected to a moving load is solved analytically for the first time. Solution of the problem is achieved by formulating the spinning Timoshenko beams as a non-self-adjoint system. To compute the system dynamic response using the modal analysis technique, it is necessary to determine the eigenquantities of both the original and adjoint systems. In order to fix the adjoint eigenvectors relative to the eigenvectors of the original system, the biorthonormality conditions are invoked. Responses for the four classical boundary conditions which do not involve rigidbody motions are illustrated. To ensure the validity of the method, these results are compared with those from Euler-Bernoulli and Rayieigh beam theories. Numerical simulations are performed to study the influence of the four boundary conditions on selected system parameters.

This content is only available via PDF.
You do not currently have access to this content.