A stabilized semi-implicit fractional step algorithm based on the finite element method for solving ship wave problems using unstructured meshes is presented. The stabilized governing equations for the viscous incompressible fluid and the free surface are derived at a differential level via a finite calculus procedure. This allows us to obtain a stabilized numerical solution scheme. Some particular aspects of the problem solution, such as the mesh updating procedure and the transom stern treatment, are presented. Examples of the efficiency of the semi-implicit algorithm for the analysis of ship hydrodynamics problems are presented.
Issue Section:
Technical Papers
1.
Garcı´a, J., On˜ate, E., Sierra, H., Sacco, C., and Idelsohn, S., 1998, “A Stabilized Numerical Method for Analysis of Ship Hydrodynamics,” ECCOMAS98, K. Papaliou et al., eds., John Wiley and Sons, New York.
2.
On˜ate, E., Idelsohn, S., Sacco, C., and Garcı´a, J., 1998, “Stabilization of the Numerical Solution for the Free Surface Wave Equation in Fluid Dynamics,” ECCOMAS98, K. Papaliou et al., eds., John Wiley and Sons, New York.
3.
On˜ate, E., and Garcı´a, J., 1999, “A Methodology for Analysis of Fluid-Structure Interaction Accounting for Free Surface Waves,” European Conference on Computational Mechanics (ECCM99), Aug. 31–Sept. 3, Munich, Germany.
4.
On˜ate
, E.
, 1998
, “Derivation of Stabilized Equations for Advective-Diffusive Transport and Fluid Flow Problems
,” Comput. Methods Appl. Mech. Eng.
, 151
, pp. 233
–267
.5.
On˜ate
, E.
, Garcı´a
, J.
, and Idelsohn
, S.
, 1997
, “Computation of the Stabilization Parameter for the Finite Element Solution of Advective-Diffusive Problems
,” Int. J. Numer. Methods Fluids
, 25
, pp. 1385
–1407
.6.
On˜ate, E., Garcı´a, J., and Idelsohn, S., 1998, “An Alpha-Adaptive Approach for Stabilized Finite Element Solution of Advective-Diffusive Problems With Sharp Gradients,” New Adv. in Adaptive Comp. Met. in Mech., P. Ladeveze and J. T. Oden, eds., Elsevier, New York.
7.
Garcı´a, J., 1999, “A Finite Element Method for Analysis of Naval Structures,” Ph.D. thesis, Univ. Polite`cnica de Catalunya, Dec. (in Spanish).
8.
On˜ate
, E.
, 2000
, “A Stabilized Finite Element Method for Incompressible Viscous Flows Using a Finite Increment Calculus Formulation
,” Comput. Methods Appl. Mech. Eng.
, 182
, pp. 1
–2
, 355–370.9.
On˜ate
, E.
, and Garcı´a
, J.
, 2001
, “A Finite Element Method for Fluid-Structure Interaction With Surface Waves Using a Finite Calculus Formulation
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 635
–660
.10.
On˜ate, E., 2001, “Possibilities of Finite Calculus in Computational Mechanics,” presented at the First Asian-Pacific Congress on Computational Mechanics, APCOM’01 Sydney, Australia, Nov. 20–23.
11.
Tezduyar
, T. E.
, 1991
, “Stabilized Finite Element Formulations for Incompressible Flow Computations
,” Adv. Appl. Mech.
, 28
, pp. 1
–44
.12.
Zienkiewicz
, O. C.
, and Codina
, R.
, 1995
, “A General Algorithm for Compressible and Incompressible Flow. Part I: The Split Characteristic Based Scheme
,” Int. J. Numer. Methods Fluids
, 20
, pp. 869
–885
.13.
Tezduyar
, T. E.
, 2001
, “Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,” Arch. Comput. Methods Eng.
, 8
, pp. 83
–130
.14.
Codina
, R.
, 2001
, “Pressure Stability in Fractional Step Finite Element Methods for Incompressible Flows
,” J. Comput. Phys.
, 170
, pp. 112
–140
.15.
Zienkiewicz, O. C., and Taylor, R. C., 2000, The Finite Element Method, 5th Ed., Butterworth-Heinemann, Stonetam, MA.
16.
Hughes
, T. J. R.
, and Mallet
, M.
, 1986
, “A New Finite Element Formulations for Computational Fluid Dynamics: III. The Generalized Streamline Operator for Multidimensional Advective-Diffusive Systems
,” Comput. Methods Appl. Mech. Eng.
, 58
, pp. 305
–328
.17.
Perot
, J. B.
, 1993
, “An Analysis of the Fractional Step Method
,” J. Comput. Phys.
, 108
, pp. 51
–58
.18.
Alessandrini
, B.
, and Delhommeau
, G.
, 1999
, “A Fully Coupled Navier-Stokes Solver for Calculation of Turbulent Incompressible Free Surface Flow Past a Ship Hull
,” Int. J. Numer. Methods Fluids
, 29
, pp. 125
–142
.19.
Celik, I., Rodi, W., and Hossain, M. S., 1982, “Modelling of Free Surface Proximity Effects on Turbulence,” Proc. Refined Modelling of Flows, Paris.
20.
Idelsohn
, S.
, On˜ate
, E.
, and Sacco
, C.
, 1999
, “Finite Element Solution of Free Surface Ship-Wave Problem
,” Int. J. Numer. Methods Eng.
, 45
, pp. 503
–508
.21.
Lo¨hner
, R.
, Yang
, C.
, On˜ate
, E.
, and Idelsohn
, S.
, 1999
, “An Unstructured Grid-Based Parallel Free Surface Solver
,” Concr. Library Int.
, 31
, pp. 271
–293
.22.
Chiandusi
, G.
, Bugeda
, G.
, and On˜ate
, E.
, 2000
, “A Simple Method for Update of Finite Element Meshes
,” Commun, Numer. Meth. Engng.
, 16
, pp. 1
–9
.23.
Matusiak, J., Tingqiu, L., and Lehtima¨ki, R., 1999, “Numerical Simulation of Viscous Flow With Free Surface Around Realistic Hull Forms With Free Surface Around Realistic Hull Forms With Transform,” Report of Ship Laboratory, Helsinki University of Technology, Finland.
24.
Raven, H. C., 1996, “A Solution Method for Ship Wave Resistance Problem,” Ph.d. thesis, University of Delft, June.
25.
Garcı´a, J., 2002, “SHYNE Manual,” available at www.cimne.upc.es/shyne.
26.
“GiD,” 2001, The Personal Pre/Postprocessor, user manual available at www.gid.cimne.upc.es.
27.
Tdyn, 2002, “A Finite Element Code for Fluid-Dynamic Analysis,” COMPASS Ingenierı´a y Sistemas SA, www.compassis.com.
28.
David Taylor Model Basis 5415 Model Database, http://www.iihr.uiowa.edu/gothenburg2000/5415/combatant.html.
29.
Korea Research Institute of Ships and Ocean Engineering (KRISO), http://www.iihr.uiowa.edu/gothenburg2000/KVLCC/tanker.html.
Copyright © 2003
by ASME
You do not currently have access to this content.