This work investigates the three-dimensional elastic state of inclusions in which the prescribed stress-free transformation strains or eigenstrains are spatially nonuniform and distributed either in a Gaussian, or an exponential manner. The prescribed eigenstrain distributions are taken to be dilatational. Typical research in the micromechanics of inclusions and inhomogeneities has dealt, by and large, with spatially uniform eigenstrains and, to some limited degree, with polynomial distributions. Solutions to Eshelby’s inclusion problem, where eigenstrains are Gaussian and exponential in nature, do not exist. Such eigenstrain distributions arise naturally due to highly localized point-source type heating (typical in electronic chips), due to compositional differences, and those due to diffusion related mechanisms among others. The current paper provides such a solution for ellipsoidal shaped inclusions located in an infinite isotropic elastic matrix. It is shown, similar to the much-discussed uniform eigenstrain problem, that the elastic state is completely determined in closed form save for some simple one-dimensional integrals that are evaluated trivially using numerical quadrature. For the specialized case of a spherical shape, solutions in terms of known functions are derived and numerical results are presented. The elastic state both within and outside the inclusion is investigated. For the specific case of a sphere, the elastic strain energies are given in terms of simple formulas. Some applications of the current work in various areas such as electronics, micromechanics of composites, and material science are also discussed.

1.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
A241
, pp.
376
396
.
2.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
,
A252
, pp.
561
569
.
3.
Eshelby, J. D., 1961, “Elastic Inclusions and Inhomogeneities,” Progress in Solid Mechanics 2, I. N. Sneddon and R. Hill, eds., North Holland, Amsterdam, pp. 89–140.
4.
Mura, T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff, Hague, The Netherlands.
5.
Nemat-Nasser, S., and Hori, M., 1999, Micromechanics: Overall Properties of Heterogeneous Solids, Elsevier, New York.
6.
Markov, K., and Preziosi, L., 2000, Heterogeneous Media: Micromechanics Modeling Methods and Simulations, Birkhauser Verlag, Switzerland.
7.
Weng, G. J., Taya, M., and Abe, H., eds., 1990, Micromechanics and Inhomogeneity: The Toshio Mura Anniversary Volume, Springer-Verlag, New York.
8.
Bilby, B. A., Miller, K. J., and Willis, J. R., 1984, IUTAM/IFC/ICM Symposium on Fundamentals of Deformation and Fracture, Sheffield, England, Apr. 2–5, Eshelby Memorial Symposium, Cambridge University Press, Cambridge, UK.
9.
Mura
,
T.
,
Shodja
,
H. M.
, and
Hirose
,
Y.
,
1996
, “
Inclusion Problems
,”
Appl. Mech. Rev.
,
49
(
10
), Part 2, pp.
S118–S127
S118–S127
.
10.
Mura
,
T.
,
2000
, “
Some New Problems in the Micromechanics
,”
Mater. Sci. Eng., A
,
A285
(
1–2
), pp.
224
228
.
11.
Sendeckyj, G. P., 1967, “Ellipsoidal Inhomogeneity Problem,” Ph.D. dissertation, Northwestern University, Evanston, IL.
12.
Moschovidis, Z. A., 1975, “Two Ellipsoidal Inhomogeneities and Related Problems Treated by the Equivalent Inclusion Method”, Ph.D. thesis, Northwestern University, Illinois.
13.
Moschovidis
,
Z. A.
, and
Mura
,
T.
,
1975
, “
Two-Ellipsoidal Inhomogeneities by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
42
, pp.
847
852
.
14.
Johnson
,
W. C.
,
Earmme
,
Y. Y.
, and
Lee
,
J. K.
,
1980
, “
Approximation of the Strain Field Associated With an Inhomogeneous Precipitate I: Theory
,”
ASME J. Appl. Mech.
,
47
, pp.
775
780
.
15.
Shodja
,
H. M.
, and
Sarvestani
,
A. S.
,
2001
, “
Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method
,”
ASME J. Appl. Mech.
,
68
, pp.
3
10
.
16.
Rodin
,
G. J.
, and
Hwang
,
Yuh-Long
,
1991
, “
On the Problem of Linear Elasticity for an Infinite Region Containing a Finite Number of Nonintersecting Spherical Inhomogeneities
,”
Int. J. Solids Struct.
,
27
(
2
), pp.
145
159
.
17.
Asaro
,
R. J.
, and
Barnett
,
D. M.
,
1975
, “
The Non-uniform Transformation Strain Problem for an Anisotropic Ellipsoidal Inclusion
,”
J. Mech. Phys. Solids
,
23
, pp.
77
83
.
18.
Mura
,
T.
, and
Kinoshita
,
N.
,
1978
, “
The Polynomial Eigenstrain Problem or an Anisotropic Ellipsoidal Inclusion
,”
Phys. Status Solidi A
,
48
, pp.
447
450
.
19.
Furuhashi
,
R.
,
Huang
,
J. H.
, and
Mura
,
T.
,
1992
, “
Sliding Inclusions and Inhomogeneities with Frictional Interfaces
,”
ASME J. Appl. Mech.
,
59
, pp.
783
788
.
20.
Ru
,
C. Q.
, and
Schiavone
,
P.
,
1997
, “
A Circular Inclusion With Circumferentially Inhomogeneous Interface in Antiplane Shear
,”
Proc. R. Soc. London, Ser. A
,
453
, pp.
2551
2572
.
21.
Zhong
,
Z.
, and
Meguid
,
S. A.
,
1996
, “
On the Eigenstrain Problem of a Spherical Inclusion With an Imperfectly Bonded Interface
,”
ASME J. Appl. Mech.
,
63
,
877
883
.
22.
Walpole
,
L. J.
,
1978
, “
Coated Inclusion in an Elastic Medium
,”
Proc. Cambridge Philos. Soc.
,
83
, pp.
495
506
.
23.
Luo
,
H. A.
, and
Weng
,
G. J.
,
1989
, “
On Eshelby’s S-Tensor in Three Phase Cylindrically Concentric Solid
,”
Mech. Mater.
,
8
(
2–3
), pp.
77
88
.
24.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
,
1994
, “
Micromechanical Approach of the Coated Inclusion Problem and Applications to Composite Problems
,”
J. Eng. Mater. Technol.
,
116
(
3
), pp.
274
278
.
25.
Ru
,
C. Q.
,
1999
, “
Analytic Solution for Eshelby’s Problem of an Inclusion of Arbitrary Shape in a Plane or Half-plane
,”
Trans. ASME, J. Appl. Mech.
,
66
, pp.
315
322
.
26.
Taya
,
M.
,
1999
, “
Micromechanics Modeling of Smart Composites
,”
Composites, Part A
30A
(
4
), pp.
531
536
.
27.
Ru
,
C. Q.
,
2000
, “
Eshelby’s Problem for Two-Dimensional Piezoelectric Inclusions of Arbitrary Shape
,”
Proc. R. Soc. London, Ser. A
,
456
(
1997
), pp.
1051
1068
.
28.
Deng
,
W.
, and
Meguid
,
S. A.
,
1999
, “
Closed Form Solutions for Partially Debonded Circular Inclusion in Piezoelectric Materials
,”
Acta Mech.
,
137
(
3–4
), pp.
167
181
.
29.
Mikata
,
Y.
,
2001
, “
Explicit Determination of Piezoelectric Eshelby Tensors for a Spheroidal Inclusion
,”
Int. J. Solids Struct.
,
38
(
40–41
), pp.
7045
7063
.
30.
Chiu
,
Y. P.
,
1977
, “
On the Stress Field due to Initial Strains in Cuboid Surrounded by an Infinite Elastic Space
,”
ASME J. Appl. Mech.
,
44
, pp.
587
590
.
31.
Nozaki
,
H.
, and
Taya
,
M.
,
2001
, “
Elastic Fields in a Polyhedral Inclusion With Uniform Eigenstrains and Related Problems
,”
ASME J. Appl. Mech.
,
68
, pp.
441
452
.
32.
Johnson
,
H. T.
, and
Freund
,
L. B.
,
2001
, “
The Influence of Strain on Confined Electronic States in Semiconductor Quantum Structures
,”
Int. J. Solids Struct.
,
38
, pp.
1045
1062
.
33.
Chandrasekhar, S., 1969, Ellipsoidal Figures of Equilibrium, Dover, New York.
34.
Neutsch
,
W.
,
1979
, “
On the Gravitational Energy of Ellipsoidal Bodies and Some Related Functions
,”
Astron. Astrophys.
,
72
(
3
), pp.
339
347
.
35.
Dyson
,
F. W.
,
1891
, “
The Potentials of Ellipsoids with Variable Density
,”
Quart. J. Pure Appl. Math.
,
XXV
, pp.
259
288
.
36.
Kellogg, O. D., 1953, Foundation of Potential Theory, Dover, New York.
37.
MacMillan, W. D., 1958, The Theory of the Potential, Dover, New York.
38.
Gradshteyn, I. S., Ryzhik, I. M., and Jeffrey, A., 1994, Table of Integrals, Series, and Products, Academic Press, San Diego, CA.
You do not currently have access to this content.