A general model of generalized linear thermo-viscoelasticity for isotropic material is established taking into consideration the rheological properties of the volume. The given model is applicable to three generalized theories of thermoelasticity: the generalized theory with one (Lord-Shulman theory) or with two relaxation times (Green-Lindsay theory) and with dual phase-lag (Chandrasekharaiah-Tzou theory) as well as to the dynamic coupled theory. The cases of thermo-viscoelasticity of Kelvin-Voigt model or thermoviscoelasticity ignoring the rheological properties of the volume can be obtained from the given model. The equations of the corresponding thermoelasticity theories result from the given model as special cases. A formulation of the boundary integral equation (BIE) method, fundamental solutions of the corresponding differential equations are obtained and an example illustrating the BIE formulation is given.

1.
Fredudenthal
,
A. M.
,
1954
, “
Effect of Rheological Behavior on Thermal Stresses
,”
J. Appl. Phys.
,
25
, pp.
1110
1117
.
2.
Fung, Y. C., 1968, Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, NJ.
3.
Bland, D. R., 1960, The Theory of Linear Viscoelasticity, Pergamon Press, Oxford, UK.
4.
Gurtin
,
M. E.
, and
Sternberg
,
E.
,
1962
, “
On the Linear Theory of Viscoelasticity
,”
Arch. Ration. Mech. Anal.
,
11
, pp.
291
356
.
5.
Christensen, R. M., 1971, Theory of Viscoelasticity—An Introduction, Academic Press, San Diego, CA.
6.
Ilioushin, A. A., and Pobedria, B. E., 1970, Fundamentals of the Mathematical Theory of Thermal Visco-Elasticity, Nauka, Moscow.
7.
Koltunov, M. A., 1976, Creeping and Relaxation, Izd. Vyschaya Shkola, Moscow.
8.
Rabotnov, Yu. N., 1980, Elements of Hereditary Solid Mechanics, Mir, Moscow.
9.
Kovacs
,
A. J.
,
1958
, “
La Contraction Isotherme du Volume des Polymeres Amorphes
,”
J. Polym. Sci., Part A: Gen. Pap.
,
30
, p.
131
131
.
10.
Biot
,
M.
,
1956
, “
Thermoelasticity and Irreversible Thermodynamics
,”
J. Appl. Phys.
,
27
, pp.
240
253
.
11.
Lord
,
H.
, and
Shulman
,
Y.
,
1967
, “
A Generalized Dynamical Theory of Thermo-Elasticity
,”
J. Mech. Phys. Solids
,
15
, pp.
299
309
.
12.
Muller
,
I. M.
,
1971
, “
The Coldness, A Universal Function in Thermoelastic Bodies
,”
Arch. Ration. Mech. Anal.
,
41
, pp.
319
332
.
13.
Green
,
A. E.
, and
Laws
,
N.
,
1972
, “
On the Entropy Production Inequality
,”
Arch. Ration. Mech. Anal.
,
45
, pp.
47
53
.
14.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermoelasticity
,”
J. Elast.
,
2
, pp.
1
7
.
15.
Suhubi, E. S., 1975, “Thermoelastic Solids,” Continuum Physics, A. C. Eringen, ed., Academic Press, San Diego, CA, 2, Part 2, Chap. 2.
16.
Tzou
,
D. Y.
,
1995
, “
A Unified Approach for Heat Conduction From Macro to Micro-Scales
,”
ASME J. Heat Transfer
,
117
, pp.
8
16
.
17.
Chandraskharaiah
,
D. S.
,
1998
, “
Hyperbolic Thermoelasticity, A Review of Recent Literature
,”
Appl. Mech. Rev.
,
51
, pp.
705
729
.
18.
Ignaczak, J., 1989, “Generalized Thermoelasticity and Its Applications,” Mechanical and Mathematical Methods (Thermal Stresses III), R. B. Hetnarski, ed., North-Holland Amsterdam.
19.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
,
1999
, “
Generalized Thermoelasticity
,”
J. Therm. Stresses
,
22
, pp.
451
476
.
20.
Cruse, T. A., and Rizzo, F. J., eds., 1985, “Boundary Integral Equation Methods-Computational Applications in Applied Mechanics,” Proc. ASME Conf. on Boundary Integral Equation Methods (ASME, New York).
21.
Rizzo, F. J., and Shippy, D. J., 1979, “Recent Advances of the Boundary Element Method in Thermoelasticity,” Developments in Boundary Element Methods, P. K. Banerjee and R. Butterfield, eds., Applied Science Publishers, London, 1, pp. 155–172.
22.
Banerjee, P. K., and Butterfield, R., 1981, Boundary Element Methods in Engineering Science, McGraw-Hill, New York.
23.
Brebbia, C. A., Telles, J. C. F., and Wrobel, L. C., 1984, Boundary Element Techniques, Springer-Verlag, Berlin.
24.
Ziegler, Franz, and Irschik, Hans, 1987, “Thermal Stress Analysis Based on Maysel’s Formula,” Mechanical and Mathematical Methods (Thermal Stresses II), R. B. Hetnarski, ed., North Holland, Amsterdam.
25.
Sladek
,
V.
, and
Sladek
,
J.
,
1983
, “
Boundary Integral Equation Method in Thermoelasticity
,”
Appl. Math. Model.
,
7
, pp.
241
253
.
26.
Jaswon, M. A., and Symm, G. T., 1977, Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London.
27.
Coleman
,
B. D.
,
1964
, “
Thermodynamics of Materials With Memory
,”
Arch. Ration. Mech. Anal.
,
17
, pp.
1
46
.
28.
Nowacki, W., 1975, Dynamic Problems of Thermoelasticity, Noordhoff, Leyden, The Netherland.
29.
Alfrey, T., and Gurnee, E. F., 1956, Rheology Theory and Applications, F. R. Eirich, ed., Academic Press, San Diego, CA.
30.
Cherchill, R. V., 1972, Operational Mathematics, 3rd Ed., Mc Graw-Hill, New York.
31.
Nowacki, W., 1962, Thermoelasticity, Pergamon Press, London.
32.
Morse, P., and Feshbach, H., 1953, Methods of Theoretical Physics, McGraw-Hill, New York.
33.
Ezzat
,
Magdy A.
, and
El-Karamany
,
Ahmed S.
,
2002
, “
The Uniqueness and Reciprocity Theorems for Generalized Thermoviscoelasticity for Anisotropic Media
,”
J. Therm. Stresses
,
25
(
6
), pp.
507
522
.
34.
Honig
,
G.
, and
Hirdes
,
U.
,
1984
, “
A Method for the Numerical Inversion of the Laplace Transform
,”
J. Comput. Appl. Math.
,
10
, pp.
113
132
.
You do not currently have access to this content.