In a single-component material, a chemical potential gradient or a wind force drives self-diffusion. If the self-diffusion flux has a divergence, the material deforms. We formulate a continuum theory to be consistent with this kinematic constraint. When the diffusion flux is divergence-free, the theory decouples into Stokes’s theory for creep and Herring’s theory for self-diffusion. A length emerges from the coupled theory to characterize the relative rate of self-diffusion and creep. For a flow in a film driven by a stress gradient, creep dominates in thick films, and self-diffusion dominates in thin films. Depending on the film thickness, either stress-driven creep or stress-driven diffusion prevails to counterbalance electromigration. The transition occurs when the film thickness is comparable to the characteristic length of the material.

1.
Chason
,
E.
,
Sheldon
,
B. W.
,
Freund
,
L. B.
,
,
Freund
,
L. B.
, and
Hearne
,
J. A.
,
2002
, “
Origin of Compressive Residual Stress in Polycrystalline Thin Films
,”
Phys. Rev. Lett.
,
88
, p.
156103
156103
.
2.
Vermilyea
,
D. A.
,
1957
, “
On the Mechanism of Oxidation of Metals
,”
Acta Metall.
,
5
, pp.
492
495
.
3.
Prussin
,
S.
,
1972
, “
Generation of Stacking Faults and Prismatic Dislocation Loops in Device-Processed Silicon Wafers
,”
J. Appl. Phys.
,
43
, pp.
2850
2856
.
4.
Blech
,
I. A.
, and
Herring
,
C.
,
1976
, “
Stress Generation by Electromigration
,”
Appl. Phys. Lett.
,
29
, pp.
131
133
.
5.
Korhonen
,
M. A.
,
Borgesen
,
P.
,
Brown
,
D. D.
, and
Li
,
C. Y.
,
1993
, “
Microstructure Based Statistical Model of Electromigration Damage in Confined Line Metallization in the Presence of Thermally Induced Stresses
,”
J. Appl. Phys.
,
74
, pp.
4995
5004
.
6.
Suo
,
Z.
,
1998
, “
Stable State of Interconnect under Temperature Change and Electric Current
,”
Acta Mater.
,
46
, pp.
3725
3732
.
7.
Wang
,
P.-C.
,
Cargill
,
G. S.
,
Noyan
,
I. C.
, and
Hu
,
C.-K.
,
1998
, “
Electromigration-Induced Stress in Aluminum Conductor Lines Measured by X-ray Microdiffraction
,”
Appl. Phys. Lett.
,
72
, pp.
1296
1298
.
8.
Herring
,
C.
,
1950
, “
Diffusional Viscosity of a Polycrystalline Solid
,”
J. Appl. Phys.
,
21
, pp.
437
445
.
9.
Darken
,
L. S.
,
1948
, “
Diffusion, Mobility and Their Interrelation Through Free Energy in Binary Metallic Systems
,”
Trans. AIME
,
175
, pp.
184
201
.
10.
Stephenson
,
G. B.
,
1988
, “
Deformation during Interdiffusion
,”
Acta Metall.
,
36
, pp.
2663
2683
.
11.
Suo
,
Z.
,
Kubair
,
D. V.
,
Evans
,
A. G.
,
Clarke
,
D. R.
, and
Tolpygo
,
V. K.
,
2003
, “
Stress Induced in Alloys by Selective Oxidation
,”
Acta Mater.
,
51
, pp.
959
974
.
12.
Einstein, A., 1926, Investigations on the Theory of the Brownian Movement, reprinted by Dover Publications, New York.
13.
Nabarro, F. R. N., 1948, “Deformation of Crystals by the Motion of Single Ions,” Report of a Conference on Strength of Solids (Bristol), pp. 75–90.
14.
Coble
,
R. L.
,
1963
, “
A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials
,”
J. Appl. Phys.
,
34
, pp.
1679
1682
.
15.
Needleman
,
A.
, and
Rice
,
J. R.
,
1980
, “
Plastic Creep Flow Effects in the Diffusive Cavitation of Grain Boundaries
,”
Acta Metall.
,
28
, pp.
1315
1332
.
16.
Balluffi
,
R. W.
,
1953
, “
The Supersaturation and Precipitation of Vacancies During Diffusion
,”
Acta Metall.
,
2
, pp.
194
202
.
17.
Suo
,
Z.
,
1997
, “
Motions of Microscopic Surfaces in Materials
,”
Adv. Appl. Mech.
,
33
, pp.
193
294
.
18.
Cocks
,
A. C. F.
,
Gill
,
S. P. A.
, and
Pan
,
J. Z.
,
1999
, “
Modeling Microstructure Evolution in Engineering Materials
,”
Adv. Appl. Mech.
,
36
, pp.
81
162
.
19.
de Groot, S. R., and Masur, P., 1984, Nonequilibrium Thermodynamics, Dover Publications, New York.
20.
Frost, H. J., and Ashby, M. F., 1982, Deformation-Mechanism Maps, Pergamon Press, Oxford, UK.
21.
Rosenberg
,
R.
,
Edelstein
,
D. C.
,
Hu
,
C.-K.
, and
Rodbell
,
K. P.
,
2000
, “
Copper Metallization for High Performance Silicon Technology
,”
Annu. Rev. Mater. Sci.
,
30
, pp.
229
262
.
22.
Suo, Z., 2003, “Reliability of Interconnect Structures,” pp. 265–324 in Volume 8: Interfacial and Nanoscale Failure W. Gerberich, and W. Yang, eds. (Comprehensive Structural Integrity, I. Milne, R. O. Ritchie, and B. Karihaloo, editors-in-chief), Elsevier, Amsterdam.
You do not currently have access to this content.