The main objective of the paper is to develop the mathematical analysis of the response of a metallic stent subject to axisymmetric loads over its length and to different boundary conditions. These situations introduce bending stresses in the stent and cannot be captured by a model of the stent that can be used to characterize the pressure-diameter relationship under axially uniform loading. The analysis presented here is based on an analogy between a thin-walled pressure vessel and a beam on elastic foundation; in the present application, we derive an equivalent beam model for the bending response of a stent. Using this model, we evaluate the shape of the stent exiting the catheter as well as the variation of the diameter along the length of the stent constrained by stiff end supports. This approach can be used to evaluate the coupled response of the stent and the blood vessel, if the mechanical properties of the blood vessel are known. The coupled problem and its implications in the design of stents are discussed.

1.
Wang
,
R.
, and
Ravi-Chandar
,
K.
,
2004
, “
Mechanical Response of a Metallic Aortic Stent: I. Pressure-Diameter Relationship
,”
ASME J. Appl. Mech.
,
71
, pp.
697
705
.
2.
Ormiston
,
J. A.
,
Dixon
,
S. R.
,
Webster
,
M. W. I.
,
Ruygrok
,
P. N.
,
Stewart
,
J. T.
,
Minchington
,
I.
, and
West
,
T.
,
2000
, “
Stent Longitudinal Flexibility: A Comparison of 13 Stent Designs Before and After Balloon Expansion
,”
Cath. Cardiovas. Intervent.
,
50
, pp.
120
124
.
3.
Dumoulin
,
C.
, and
Cochelin
,
B.
,
2000
, “
Mechanical Behavior Modeling of Balloon-Expandable Stents
,”
J. Biomech.
,
33
, pp.
1461
1470
.
4.
Etave
,
F.
,
Inet
,
G.
,
Boivin
,
M.
,
Boyer
,
J. C.
,
Rioufol
,
G.
, and
Thollet
,
G.
,
2001
, “
Mechanical Properties of Coronary Stents Determined by Using Finite Element Analysis
,”
J. Biomech.
,
34
, pp.
1065
1075
.
5.
Timoshenko, S. P., 1956, Strength of Materials, Part II, 3rd Ed., D. Van Nostrand Company, Princeton, NJ, pp. 124–128.
6.
Akai, T. J., 1994, Applied Numerical Methods for Engineers, John Wiley and Sons, New York, p. 242.
7.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 2002, Numerical Recipes in C++, Cambridge University Press, New York, p. 753.
8.
Timoshenko, S. P., and Woinowsky-Krieger, S., 1959, Theory of Plates and Shells, McGraw-Hill, New York, pp. 475–478.
9.
Peterson
,
L. H.
,
Jensen
,
R. E.
, and
Parnel
,
J.
,
1960
, “
Mechanical Properties of Arteries in Vivo
,”
Circ. Res.
,
8
, pp.
622
639
.
10.
La¨nne
,
T.
,
Stale
,
H.
,
Bengtsson
,
H.
,
Gustafsson
,
D.
,
Berqvist
,
D.
,
Sonesson
,
B.
,
Lecerof
,
H.
, and
Dahl
,
P.
,
1992
, “
Noninvasive Measurement of Diameter Changes in the Distal Abdominal Aorta in Man
,”
Ultrasound Med. Biol.
,
18
, pp.
451
457
.
11.
Dutta
,
A.
,
Wang
,
D. M.
, and
Tarbell
,
J. M.
,
1992
, “
Numerical Analysis of Flow in an Elastic Artery Model
,”
ASME J. Biomech. Eng.
,
114
, pp.
26
33
.
12.
Quarteroni
,
A.
,
Tuveri
,
M.
, and
Veneziani
,
A.
,
2000
, “
Computational Vascular Fluid Dynamics: Problems, Models and Methods
,”
Comput. Visual. Sci.
,
2
, pp.
163
197
.
13.
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York.
14.
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics, Cells, Tissues and Organs, Springer-Verlag, New York.
15.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
, pp.
475
482
.
16.
Rogers
,
C.
,
Tseng
,
D. Y.
,
Squire
,
J. C.
,
Edelman
,
E. R.
,
1999
, “
Balloon-Artery Interactions During Stent Placement: A Finite Element Analysis Approach to Pressure, Compliance, and Stent Design as Contributors to Vascular Injury
,”
Circ. Res.
,
84
, pp.
378
383
.
You do not currently have access to this content.