An accelerated iterative dynamic condensation method for the model order reduction of vibration systems with viscous damping is proposed. A group of governing equations for dynamic condensation matrix are derived from the eigenvalue equations defined in the state space. Two iterative schemes for solving these governing equations are provided. Based on different state space formulations, two more groups of governing equations are developed. A comparison of the present method with three iterative approaches proposed recently is provided. The present approach is implemented into two practical vibration systems, a tall building with one tuned mass damper and a floating raft isolation system. The results show that the proposed method has much higher accuracy than the other three approaches while the computational effort is almost the same.

1.
Suarez
,
L. E.
, and
Singh
,
M. P.
, 1992, “
Dynamic Condensation Method for Structural Eigenvalue Analysis
,”
AIAA J.
0001-1452,
30
, pp.
1046
1054
.
2.
Rothe
,
K.
, and
Voss
,
H.
, 1994, “
Improving Condensation Methods for Eigenvalue Problems via Rayleigh Functions
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
111
, pp.
169
183
.
3.
Noor
,
A. K.
, 1994, “
Recent Advances and Applications of Reduction Methods
,”
Appl. Mech. Rev.
0003-6900,
47
, pp.
125
146
.
4.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
, 1995, “
Model Reduction using Dynamic and Iterative IRS Technique
,”
J. Sound Vib.
0022-460X,
186
, pp.
311
323
.
5.
Kim
,
K.-O.
, 1995, “
Hybrid Dynamic Condensation for Eigenproblems
,”
Comput. Struct.
0045-7949,
56
, pp.
105
112
.
6.
Hou
,
Z.
, and
Chen
,
S.
, 1997, “
Iterated Dynamic Condensation Technique and Its Applications in Modal Testing
,”
Shock Vib.
1070-9622,
4
, pp.
143
151
.
7.
Mokeyev
,
V. V.
, 1998, “
A Frequency Condensation Method for the Eigenvalue Problem
,”
Commun. Numer. Methods Eng.
1069-8299,
14
, pp.
1
8
.
8.
Qu
,
Z.
, and
Fu
,
Z.
, 1998, “
An Iterative Method for Dynamic Condensation of Finite Element Models, Part I: Basic Method
,”
Journal of Shanghai Jiao Tong University (English Edition)
,
3
, pp.
83
88
.
9.
Qu
,
Z.-Q.
, and
Fu
,
Z.-F
, 1998, “
New Structural Dynamic Condensation Method for Finite Element Models
,”
AIAA J.
0001-1452,
36
, pp.
1320
1324
.
10.
Qu
,
Z.-Q.
, 1998, “
A Multi-Step Method for Matrix Condensation of Finite Element Models
,”
J. Sound Vib.
0022-460X,
214
, pp.
965
971
.
11.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
, 1998, “
The Convergence of the Iterated IRS Methods
,”
J. Sound Vib.
0022-460X,
211
, pp.
123
132
.
12.
Kim
,
K.-O.
, 1998, “
Perturbation Method for Condensation of Eigenproblems
,”
AIAA J.
0001-1452,
36
, pp.
1537
1543
.
13.
Qu
,
Z.-Q.
, 1998, “
Structural Dynamic Condensation Techniques: Theory and Applications
,” Ph. D. dissertation, State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University.
14.
Qu
,
Z.-Q.
, and
Fu
,
Z.-F.
, 2000, “
An Iterative Method for Dynamic Condensation of Structural Matrices
,”
Mech. Syst. Signal Process.
0888-3270
14
, pp.
667
678
.
15.
Kim
,
K.-O.
, and
Kang
,
M.-K.
, 2001, “
Convergence Acceleration of Iterative Modal Reduction Methods
,”
AIAA J.
0001-1452
39
, pp.
134
140
.
16.
Qu
,
Z.-Q.
,
Model Order Reduction Techniques: With Applications in Finite Element Analysis
,
Springer-Verlag
, London, 2004.
17.
Kammer
,
D. C.
, 1987, “
Test-Analysis Model Development using an Exact Modal Reduction
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763
2
, pp.
174
179
.
18.
Kane
,
K.
, and
Torby
,
B. J.
, 1991, “
The Extended Modal Reduction Method Applied to Rotor Dynamic Problems
,”
ASME J. Vibr. Acoust.
0739-3717
113
, pp.
79
84
.
19.
Qu
,
Z.-Q.
, and
Chang
,
W.
, 2000, “
Dynamic Condensation Method for Viscous Damped Vibration Systems in Engineering
,”
Eng. Struct.
0141-0296
22
, pp.
1426
1432
.
20.
Rivera
,
M. A.
,
Singh
,
M. P.
, and
Suarez
,
L. E.
, 1999, “
Dynamic Condensation Approach for Nonclassically Damped Structures
,”
AIAA J.
0001-1452
37
, pp.
564
571
.
21.
Qu
,
Z.-Q.
,
Selvam
,
R. P.
, and
Jung
,
Y.
, 2003, “
Model Condensation for Nonclassically Damped Systems, Part II: Iterative Schemes for Dynamic Condensation
,”
Mech. Syst. Signal Process.
0888-3270
17
, pp.
1017
1032
.
22.
Rao
,
G. V.
, 2002, “
Dynamic Condensation and Synthesis of Unsymmetric Structural Systems
,”
ASME J. Appl. Mech.
0021-8936
69
, pp.
610
616
.
23.
Friswell
,
M. I.
,
Garvey
,
S. D.
, and
Penny
,
J. E. T.
, 1998, “
The Convergence of the Iterated IRS Methods
,”
J. Sound Vib.
0022-460X
211
, pp.
123
132
.
You do not currently have access to this content.