Abstract

A periodic array of cracks in a functionally graded coating bonded to a homogeneous substrate is considered. The medium is subjected to transient or static mechanical loads. The problem is formulated in terms of a singular integral equation with the crack face displacement as the unknown variable. In addition to the time-varied stresses and stress intensity factors for various parameters of the problem, the effect of periodic cracking on the relaxation of the transient stress on the coating surface is discussed. Also included is the influence of the material gradient (material nonhomogeneity) on the crack tip intensity factors and stresses. Solutions for a single graded layer and a graded coating bonded to an infinite substrate are given.

1.
Miyamoto
,
Y.
,
Kaysser
,
W. A.
,
Rabin
,
B. H.
,
Kawasaki
,
A.
, and
Ford
,
A. G.
, 1999,
Functionally Graded Materials: Design, Processing and Applications
,
Kluwer
, Boston.
2.
Hasselman
,
D. P. H.
, and
Youngblood
,
G. E.
, 1978, “
Enhanced Thermal Resistance of Structural Ceramics With Thermal Conductivity Gradients
,”
J. Am. Ceram. Soc.
0002-7820,
61
, pp.
49
52
.
3.
Lee
,
Y.-D.
, and
Erdogan
,
F.
, 1995, “
Residual/Thermal Stresses in FGM and Laminated Thermal Barrier Coatings
,”
Int. J. Fract.
0376-9429,
69
, pp.
145
165
.
4.
Ravichandran
,
K. S.
, 1995, “
Thermal Residual Stresses in a Functionally Graded Material System
,”
Mater. Sci. Eng., A
0921-5093,
201
, pp.
269
276
.
5.
Noda
,
N.
, 1999, “
Thermal Stresses in Functionally Graded Materials
,”
J. Therm. Stresses
0149-5739,
22
(
1
), pp.
477
512
.
6.
Nomura
,
N.
,
Gasik
,
M.
,
Kawasaki
,
A.
, and
Watanabe
,
R.
, 2001, “
Thermomechanical Modelling of Functionally Graded Thermal Barrier Coatings
,”
Ceram. Trans.
1042-1122,
114
, pp.
223
229
.
7.
Delale
,
F.
, and
Erdogan
,
F.
, 1988, “
Interface Crack in a Nonhomogeneous Elastic Medium
,”
Int. J. Eng. Sci.
0020-7225,
26
, pp.
559
568
.
8.
Ozturk
,
M.
, and
Erdogan
,
F.
, 1993, “
The Axisymmetric Crack Problem in a Nonhomogeneous Medium
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
406
413
.
9.
Konda
,
N.
, and
Erdogan
,
F.
, 1994, “
The Mixed Mode Crack Problem in a Nonhomogeneous Elastic Medium
,”
Eng. Fract. Mech.
0013-7944,
47
, pp.
533
545
.
10.
Erdogan
,
F.
, and
Wu
,
B. H.
, 1997, “
The Surface Crack Problem for a Plate With Functionally Graded Properties
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
449
456
.
11.
Dhaliwal
,
R. S.
, and
Singh
,
B. M.
, 1978, “
On the Theory of Elasticity of a Nonhomogeneous Medium
,”
J. Elast.
0374-3535,
8
, pp.
211
219
.
12.
Gerasoulis
,
A.
, and
Srivastav
,
R. P.
, 1980, “
A Griffith Crack Problem for a Nonhomogeneous Medium
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
239
247
.
13.
Schovanec
,
L.
, and
Walton
,
J. R.
, 1988, “
On the Order of the Stress Singularity for an Antiplane Shear Crack at the Interface of Two Bonded Inhomogeneous Elastic Materials
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
234
236
.
14.
Ang
,
W. T.
, and
Clements
,
D. L.
, 1987, “
On Some Crack Problems for Inhomogeneous Elastic Materials
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
1089
1104
.
15.
Eischen
,
J. W.
, 1987, “
Fracture of Nonhomogeneous Materials
,”
Int. J. Fract.
0376-9429,
34
, pp.
3
22
.
16.
Craster
,
R. V.
, and
Atkinson
,
C.
, 1994, “
Mixed Boundary-Value Problems in Nonhomogeneous Elastic Materials
,”
Q. J. Mech. Appl. Math.
0033-5614,
47
, pp.
183
206
.
17.
Vrbik
,
J.
,
Singh
,
B. M.
,
Rokne
,
J.
, and
Dhaliwal
,
R. S.
, 2002, “
The Problem of a Penny-Shaped Crack in a Non-Homogeneous Medium Under Shear
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
773
777
.
18.
Jin
,
Z. H.
, and
Noda
,
N.
, 1994, “
Crack Tip Singular Fields in Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
0021-8936,
61
(
3
), pp.
738
740
.
19.
Bao
,
G.
, and
Cai
,
H.
, 1997, “
Delamination Cracking in Functionally Graded Coating/Metal Substrate Systems
,”
Acta Mater.
1359-6454,
45
(
3
), pp.
1055
1066
.
20.
Quian
,
G.
,
Nakamura
,
T.
, and
Berndt
,
C. C.
, 1998, “
Effects of Thermal Gradient and Residual Stresses on Thermal Barrier Coating Fracture
,”
Mech. Mater.
0167-6636,
27
, pp.
91
110
.
21.
Gaudette
,
F. G.
,
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
, 2001, “
Interface Cracks in Layered Materials Subjected to a Uniform Temperature Change
,”
Int. J. Fract.
0376-9429,
110
(
4
), pp.
325
349
.
22.
Kim
,
J. H.
, and
Paulino
,
G. H.
, 2002, “
Mixed-Mode Fracture of Orthotropic Functionally Graded Materials Using Finite Elements and the Modified Crack Closure Method
,”
Eng. Fract. Mech.
0013-7944,
69
, pp.
1557
1586
.
23.
Wang
,
Y. S.
,
Huang
,
G. Y.
, and
Gross
,
D.
, 2004, “
On the Mechanical Modeling of Functionally Graded Interfacial Zone With a Griffith Crack: Plane Deformation
,”
Int. J. Fract.
0376-9429,
125
, pp.
189
205
.
24.
Li
,
C. Y.
,
Weng
,
G. J.
, and
Duan
,
Z. P.
, 2001, “
Dynamic Behavior of a Cylindrical Crack in a Functionally Graded Interlayer Under Torsional Loading
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7473
7485
.
25.
Zhang
,
C.
,
Sladek
,
J.
, and
Sladek
,
V.
, 2003, “
Effects of Material Gradients on Transient Dynamic Mode-III Stress Intensity Factors in a FGM
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
5251
5270
.
26.
Guo
,
L. C.
,
Wu
,
L. Z.
,
Zeng
,
T.
, and
Ma
,
L.
, 2004, “
Fracture Analysis of a Functionally Graded Coating-Substrate Structure With a Crack Perpendicular to the Interface, Part II: Transient Problem
,”
Int. J. Fract.
0376-9429,
127
, pp.
39
59
.
27.
Ma
,
L.
,
Wu
,
L. Z.
,
Zhou
,
Z. G.
, and
Zeng
,
T.
, 2004, “
Crack Propagating in a Functionally Graded Strip Under the Plane Loading
,”
Int. J. Solids Struct.
0020-7683,
126
(
1
), pp.
39
55
.
28.
Lee
,
K. H.
, 2004, “
Characteristics of a Crack Propagating Along the Gradient in Functionally Gradient Materials
,”
Int. J. Solids Struct.
0020-7683,
41
(
11–12)
, pp.
2879
2898
.
29.
Chalivendra
,
V. B.
,
Shukla
,
A.
, and
Parameswaran
,
V.
, 2002, “
Dynamic Out of Plane Displacement Fields for an Inclined Crack in Graded Materials
,”
J. Elast.
0374-3535,
69
(
1–3
), pp.
99
119
.
30.
El-Hadek
,
M. A.
, and
Tippur
,
H. V.
, 2003, “
Dynamic Fracture Parameters and Constraint Effects in Functionally Graded Syntactic Epoxy Foams
,”
Int. J. Solids Struct.
0020-7683,
40
(
8
), pp.
1885
1906
.
31.
Meguid
,
S. A.
,
Wang
,
X. D.
, and
Jiang
,
L. Y.
, 2002, “
On the Dynamic Propagation of a Finite Crack in Functionally Graded Materials
,”
Eng. Fract. Mech.
0013-7944,
69
(
14–16
), pp.
1753
1768
.
32.
Shukla
,
A.
, and
Jain
,
N.
, 2004, “
Dynamic Damage Growth in Particle Reinforced Graded Materials
,”
Int. J. Impact Eng.
0734-743X,
30
(
7
), pp.
777
803
.
33.
Rousseau
,
C. E.
, and
Tippur
,
H. V.
, 2002, “
Influence of Elastic Variations on Crack Initiation in Functionally Graded Glass-Filled Epoxy
,”
Eng. Fract. Mech.
0013-7944,
69
(
14–16
), pp.
1679
1693
.
34.
Grot
,
A. S.
, and
Martyn
,
J. K.
, 1981, “
Behavior Plasma-Sprayed Ceramic Thermal Barrier Coating for Gas Turbine Engines
,”
Bull. Am. Ceram. Soc.
0002-7812,
60
(
8
), pp.
807
811
.
35.
Nied
,
H. F.
, 1987, “
Periodic Array of Cracks in a Half Plane Subjected to Arbitrary Loading
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
642
648
.
36.
Rizk
,
Abd El-Fattah
, 2004, “
Periodic Array of Cracks in a Strip Subjected to Surface Heating
,”
Int. J. Solids Struct.
0020-7683,
41
(
16–17
), pp.
4685
4696
.
37.
Schulze
,
G. W.
, and
Erdogan
,
F.
, 1998, “
Periodic Cracking of Elastic Coatings
,”
Int. J. Solids Struct.
0020-7683,
35
, pp.
3615
3634
.
38.
Timm
,
D. H.
,
Guzina
,
B. B.
, and
Voller
,
V. R.
, 2003, “
Prediction of Thermal Crack Spacing
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
125
142
.
39.
Erdogan
,
F.
, and
Ozturk
,
M.
, 1995, “
Periodic Cracking of Functionally Graded Coatings
,”
Int. J. Eng. Sci.
0020-7225,
33
(
15
), pp.
2179
2195
.
40.
Choi
,
H. J.
, 1997, “
A Periodic Array of Cracks in a Functionally Graded Nonhomogeneous Medium Loaded Under In-Plane Normal and Shear
,”
Int. J. Fract.
0376-9429,
88
, pp.
107
128
.
41.
Bao
,
G.
, and
Wang
,
L.
, 1995, “
Multiple Cracking in Functionally Graded Ceramic-Metal Coatings
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
2853
2871
.
42.
Guler
,
M. A.
, and
Erdogan
,
F.
, 2004, “
Contact Mechanics of Graded Coatings
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3865
3889
.
43.
Giannakopoulos
,
A.
, and
Suresh
,
S.
, 1997, “
Indentation of Solids With Gradients in Elastic Properties: Part I. Point Force Solution
,”
Int. J. Solids Struct.
0020-7683,
34
(
19
), pp.
2357
2392
.
44.
Giannakopoulos
,
A.
, and
Suresh
,
S.
, 1997, “
Indentation of Solids With Gradients in Elastic Properties: Part II. Axisymetric Indenters
,”
Int. J. Solids Struct.
0020-7683,
34
(
19
), pp.
2393
2428
.
45.
Wang
,
B. L.
,
Mai
,
Y.-W.
, and
Noda
,
N.
, 2002, “
Fracture Mechanics Analysis Model for Functionally Graded Materials With Arbitrarily Distributed Properties
,”
Int. J. Fract.
0376-9429,
116
, pp.
161
177
.
46.
Miller
,
M. K.
, and
Guy
,
W. T.
, 1966, “
Numerical Inversion of the Laplace Transform by Use of Jacobi Polynomials
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
3
, pp.
624
635
.
47.
Murakami
,
Y.
, 1987,
Stress Intensity Factors Handbook
,
Pergamon
, New York.
48.
Sih
,
G. C.
, 1977, “
Elastodynamics Crack Problems
,”
Mechanics of Fracture Mechanics
,
Noordhoff
, Leyden, Vol.
4
.
You do not currently have access to this content.