A probabilistic approach for model updating and damage detection of structural systems is presented using noisy incomplete input and incomplete response measurements. The situation of incomplete input measurements may be encountered, for example, during low-level ambient vibrations when a structure is instrumented with accelerometers that measure the input ground motion and the structural response at a few instrumented locations but where other excitations, e.g., due to wind, are not measured. The method is an extension of a Bayesian system identification approach developed by the authors. A substructuring approach is used for the parameterization of the mass, damping and stiffness distributions. Damage in a substructure is defined as stiffness reduction established through the observation of a reduction in the values of the various substructure stiffness parameters compared with their initial values corresponding to the undamaged structure. By using the proposed probabilistic methodology, the probability of various damage levels in each substructure can be calculated based on the available dynamic data. Examples using a single-degree-of-freedom oscillator and a 15-story building are considered to demonstrate the proposed approach.

1.
Natke
,
H. G.
, and
Yao
,
J. T. P.
, eds., 1988,
Proceedings of the Workshop on Structural Safety Evaluation Based on System Identification Approaches
,
Vieweg
,
Wiesbaden
.
2.
Agbabian
,
M. S.
, and
Masri
,
S. F.
, eds., 1988,
Proceedings of the International Workshop on Nondestructive Evaluation for Performance of Civil Structures
.
Los Angeles, CA
: Department of Civil Engineering,
University of Southern California
.
3.
Chang
,
F. K.
, ed., 2003,
Proceedings of the 4th International Workshop on Structural Health Monitoring
,
Stanford University
.
4.
Mazurek
,
D. F.
, and
DeWolf
,
J. T.
, 1990, β€œ
Experimental Study of Bridge Monitoring Technique
,”
J. Struct. Eng.
0733-9445,
116
(
9
), pp.
2532
–
2549
.
5.
Hearn
,
G.
, and
Testa
,
R. B.
, 1991, β€œ
Modal Analysis for Damage Detection in Structures
,”
J. Struct. Eng.
0733-9445,
117
(
10
), pp.
3042
–
3063
.
6.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
, 1996, β€œ
Damage Identification and Health Monitoring of Structural and Mechanical Systems From Changes in Their Vibrations Characteristics: A Literature Review
,” Technical Report, LA-13070-MS, Los Alamos National Laboratory.
7.
Lam
,
H. F.
,
Ko
,
J. M.
, and
Wong
,
C. W.
, 1998, β€œ
Localization of Damaged Structural Connections Based on Experimental Modal and Sensitivity Analysis
,”
J. Sound Vib.
0022-460X,
210
(
1
), pp.
91
–
115
.
8.
Smyth
,
A. W.
,
Masri
,
S. F.
,
Caughey
,
T. K.
, and
Hunter
,
N. F.
, 2000, β€œ
Surveillance of Intricate Mechanical Systems on the Basis of Vibration Signature Analysis
,”
J. Appl. Mech.
0021-8936,
67
(
3
), pp.
540
–
551
.
9.
Farhat
,
C.
, and
Hemez
,
F. M.
, 1993, β€œ
Updating Finite Element Dynamics Models Using Element-by-Element Sensitivity Methodology
,”
AIAA J.
0001-1452,
31
(
9
), pp.
1702
–
1711
.
10.
Pandey
,
A. K.
, and
Biswas
,
M.
, 1994, β€œ
Damage Detection in Structures Using Changes in Flexibility
,”
J. Sound Vib.
0022-460X,
169
, pp.
3
–
17
.
11.
Kim
,
H. M.
,
Bartkowicz
,
T. J.
,
Smith
,
S. W.
, and
Zimmerman
,
D.
, 1995, β€œ
Health Monitoring of Large Structures
,”
J. Sound Vib.
0022-460X,
29
(
4
), pp.
18
–
21
.
12.
Topole
,
K. G.
, and
Stubbs
,
N.
, 1995, β€œ
Non-Destructive Damage Evaluation in Complex Structures From a Minimum of Modal Parameters
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
10
(
2
), pp.
95
–
103
.
13.
Hemez
,
F. M.
, and
Farhat
,
C.
, 1995, β€œ
Structural Damage Detection via a Finite Element Model Updating Methodology
,”
Int. J. Anal. Exp. Modal Anal.
1066-0763,
10
(
3
), pp.
152
–
166
.
14.
Katafygiotis
,
L. S.
,
,
Papadimitriou
,
C.
, and
Lam
,
H. F.
, 1998, β€œ
A Probabilistic Approach to Structural Model Updating
,”
Soil Dyn. Earthquake Eng.
0267-7261,
17
(
7–8
), pp.
495
–
507
.
15.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
, 1998, β€œ
A Review of Damage Identification Methods That Examine Changes in Dynamics Properties
,”
Shock Vib. Dig.
0583-1024,
30
(
2
), pp.
91
–
105
.
16.
Vanik
,
M. W.
,
Beck
,
J. L.
, and
Au
,
S. K.
, 2000, β€œ
Bayesian Probabilistic Approach to Structural Health Monitoring
,”
J. Eng. Mech.
0733-9399,
126
(
7
), pp.
738
–
745
.
17.
Beck
,
J. L.
,
Au
,
S. K.
, and
Vanik
,
M. W.
, 2001, β€œ
Monitoring Structural Health Using a Probabilistic Measure
,”
Comput. Aided Civ. Infrastruct. Eng.
1093-9687,
16
, pp.
1
–
11
.
18.
Sohn
,
H.
, and
Farrar
,
C. R.
, 2001, β€œ
Damage Diagnosis Using Time Series Analysis of Vibration Signals
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
1
–
6
.
19.
Ko
,
J. M.
,
Sun
,
Z. G.
, and
Ni
,
Y. Q.
, 2002, β€œ
Multi-Stage Identification Scheme for Detecting Damage in Cable-Stayed Kap Shui Mun Bridge
,”
Eng. Struct.
0141-0296,
24
(
7
), pp.
857
–
868
.
20.
Ching
,
J.
, and
Beck
,
J. L.
, 2004, β€œ
New Bayesian Model Updating Algorithm Applied to a Structural Health Monitoring Benchmark
,”
Struct. Health Monit.
1475-9217,
3
, pp.
313
–
332
.
21.
Geyskens
,
P.
,
Der Kiureghian
,
A.
, and
Monteiro
,
P.
, 1998, β€œ
Bayesian Prediction of Elastic Modulus of Concrete
,”
J. Struct. Eng.
0733-9445,
124
(
1
), pp.
89
–
95
.
22.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
, 1998, β€œ
Updating Models and Their Uncertainties. I: Bayesian Statistical Framework
,”
J. Eng. Mech.
0733-9399,
124
(
4
), pp.
455
–
461
.
23.
Katafygiotis
,
L. S.
, and
Yuen
,
K.-V.
, 2001, β€œ
Bayesian Spectral Density Approach for Modal Updating Using Ambient Data
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
30
(
8
), pp.
1103
–
1123
.
24.
Yuen
,
K.-V.
, 2002, β€œ
Ph.D. Thesis: Model Selection, Identification and Robust Control for Dynamical Systems
,” Technical Report No. EERL 2002–03,
California Institute of Technology
, Pasadena.
25.
Yuen
,
K.-V.
, and
Katafygiotis
,
L. S.
, 2002, β€œ
Bayesian Modal Updating Using Complete Input and Incomplete Response Noisy Measurements
,”
J. Eng. Mech.
0733-9399,
128
(
3
), pp.
340
–
350
.
26.
Yuen
,
K.-V.
,
Au
,
S. K.
, and
Beck
,
J. L.
, 2004, β€œ
Two-Stage Structural Health Monitoring Methodology and Results for Phase I Benchmark Studies
,”
J. Eng. Mech.
0733-9399,
130
(
1
), pp.
16
–
33
.
27.
Jaynes
,
E. T.
, 2003,
Probability Theory: The Logic of Science
,
L.
Bretthorst
(ed.),
Cambridge University Press
.
28.
MATLAB
, 1994,
Matlab User’s Guide
,
The MathWorks, Inc.
,
Natick, MA
.
29.
Lin
,
Y. K.
, 1976,
Probabilistic Theory of Structural Dynamics
,
Krieger
,
Malabar, FL
.
You do not currently have access to this content.