The present work is concerned with a semi-implicit modification of the GENSMAC method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in primitive variables formulation with a free surface. A projection method is employed to uncouple the velocity components and pressure, thus allowing the solution of each variable separately (a segregated approach). The viscous terms are treated by the implicit backward method in time and a centered second order method in space, and the nonlinear convection terms are explicitly approximated by the high order upwind variable-order nonoscillatory scheme method in space. The boundary conditions at the free surface couple the otherwise segregated velocity and pressure fields. The present work proposes a method that allows the segregated solution of free surface flow problems to be computed by semi-implicit schemes that preserve the stability conditions of the related coupled semi-implicit scheme. The numerical method is applied to both the simulation of free surface and to confined flows. The numerical results demonstrate that the present technique eliminates the parabolic stability restriction required by the original explicit GENSMAC method, and also found in segregated semi-implicit methods with time-lagged boundary conditions. For low Reynolds number flows, the method is robust and very efficient when compared to the original GENSMAC method.

1.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2189
.
2.
Tomé
,
M. F.
, and
McKee
,
S.
, 1994, “
GENSMAC: A Computational Marker-and-Cell Method For Free Surface Flows in General Domains
,”
J. Comput. Phys.
0021-9991,
110
, pp.
171
186
.
3.
Pracht
,
W. E.
, 1971, “
A Numerical Method for Calculating Transient Creep Flows
,”
J. Comput. Phys.
0021-9991,
7
, pp.
46
60
.
4.
Armenio
,
V.
, 1997, “
An Improved MAC Method (SIMAC) for Unsteady High-Reynolds Free Surface Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
24
, pp.
185
214
.
5.
Manna
,
M.
, and
Vacca
,
A.
, 1999, “
An Efficient Method for the Solution of the Incompressible Navier-Stokes Equations in Cylindrical Geometries
,”
J. Comput. Phys.
0021-9991,
151
, pp.
563
584
.
6.
Briley
,
W. R.
, and
McDonald
,
H.
, 2001, “
An Overview and Generalization of Implicit Navier-stokes Algorithms and Approximate Factorization
,”
Comput. Fluids
0045-7930,
30
, pp.
807
828
.
7.
Kim
,
K.
,
Baek
,
S.
, and
Sung
,
H. J.
, 2002, “
An Implicit Velocity Decoupling Procedure for the Incompressible Navier-stokes Equations
,”
Int. J. Numer. Methods Fluids
0271-2091,
38
, pp.
125
138
.
8.
Armfield
,
S.
, and
Street
,
R.
, 2003, “
The Pressure Accuracy of Fractional-Step Methods for the Navier-stokes Equations on Staggered Grids
,”
Aust N. Z. Ind. Appl. Math. J.
1446-1811,
44
, pp.
20
39
.
9.
Mantyla
,
M.
, 1988,
An Introduction to Solid Modeling
,
Computer Science
,
Rockville, MD
.
10.
Mangiavacchi
,
N.
,
Castelo
,
A.
,
Tomé
,
M. F.
,
Cuminato
,
J. A.
,
de Oliveira
,
M. L. B.
, and
McKee
,
S.
, 2005, “
An Effective Implementation of Surface Tension Using the Marker and Cell Method for Axisymmetric and Planar Flow
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
26
, pp.
1340
1368
.
11.
de Sousa
,
F. S.
,
Mangiavacchi
,
N.
,
Nonato
,
L. G.
,
Castelo
,
A.
,
Tomé
,
M. F.
,
Ferreira
,
V. G.
,
Cuminato
,
J. A.
, and
McKee
,
S.
, 2004, “
A Front-Tracking∕Front-Capturing Method for the Simulation of 3D Multi-Fluid Flows With Free Surfaces
,”
J. Comput. Phys.
0021-9991,
198
, pp.
469
499
.
12.
Amsden
,
A. A.
, and
Harlow
,
F. H.
, 1970, “
A Simplified MAC Technique for Incompressible Fluid Flow Calculations
,”
J. Comput. Phys.
0021-9991,
6
, pp.
332
335
.
13.
Tomé
,
M. F.
,
McKee
,
S.
,
Barratt
,
L.
,
Jarvis
,
D. A.
, and
Patrick
,
A. J.
, 1999, “
An Experimental and Numerical Investigation of Container Filling With Viscous Liquids
,”
Int. J. Numer. Methods Fluids
0271-2091,
31
, pp.
1333
1353
.
14.
Gresho
,
P. M.
, 1990, “
On the Theory of Semi-Implicit Projection Methods for Viscous Incompressible Flow and its Implemention via a Finite Element Method That Also Introduces a Nearly Consistent Mass Matrix
,”
Int. J. Numer. Methods Fluids
0271-2091,
11
, pp.
587
620
.
15.
Hodge
,
W. V. D.
, 1952,
The Theory and Applications of Harmonic Integrals
,
Cambridge University Press
,
Cambridge
.
16.
Denaro
,
F. M.
, 2003, “
On the Applications of the Helmoltz-Hodge Decomposition in Projection Methods for Incompressible Flows With General Boundary Conditions
,”
Int. J. Numer. Methods Fluids
0271-2091,
43
, pp.
43
69
.
17.
Ferreira
,
V. G.
,
Tomé
,
M. F.
,
Mangiavacchi
,
N.
,
Castelo
,
A.
,
Cuminato
,
J. A.
, and
McKee
,
S.
, 2002, “
High Order Upwinding and the Hydraulic Jump
,”
Int. J. Numer. Methods Fluids
0271-2091,
39
, pp.
549
583
.
18.
Castelo
,
A. F.
,
Tomé
,
M. F.
,
Cesar
,
M. L.
,
Cuminato
,
J. A.
, and
Mckee
,
S.
, 2000, “
Freeflow: An Intregated Simulation System for Three-Dimensional Free Surface Flows
,”
Comput. Visualization Sci.
,
2
, pp.
199
210
.
19.
Batchelor
,
G. K.
, 1970,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge
, pp.
182
184
.
20.
Tanner
,
R. I.
, 1970, “
A Theory of Die-Swell
,”
J. Polym. Sci. A
0449-2951,
8
, pp.
2067
2078
.
21.
Hill
,
G. A.
, and
Chenier
,
C. L.
, 1984, “
Die Swell Experiments for Newtonian Fluids
,”
Can. J. Chem. Eng.
0008-4034,
62
, pp.
40
45
.
22.
Tanner
,
R. I.
, 1988,
Engineering Rheology
,
Clarendon
,
Oxford
, pp.
305
343
.
23.
Liu
,
T. J.
,
Yu
,
A.
, and
Cheng
,
S. H.
, 1991, “
Finite Difference Solution of a Newtonian Jet Swell Problem
,”
Int. J. Numer. Methods Fluids
0271-2091,
12
, pp.
125
142
.
24.
Ngamaramvaranggul
,
V.
, and
Webster
,
M. F.
, 1999, “
Viscoelastic Simulation of Stick-Slip and Die-Swell Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
29
, pp.
363
371
.
25.
Housiadas
,
K.
,
Georgiou
,
G.
, and
Tsamopoulos
,
J.
, 2000, “
The Steady Annular Extrusion of a Newtonian Liquid Under Gravity and Surface Tension
,”
Int. J. Numer. Methods Fluids
0271-2091,
33
, pp.
1099
1119
.
26.
Chang
,
P. W.
,
Patten
,
T. W.
, and
Finlayson
,
B. A.
, 1979, “
Collocation and Galerkin Finite Element Methods for Viscoelastic Fluid Flow-II: Die Swell Problems With a Free Surface
,”
Comput. Fluids
0045-7930,
7
, pp.
285
293
.
27.
Omodei
,
B. J.
, 1979, “
Computer Solutions of a Plane Newtonian Jet With Surface Tension
,”
Comput. Fluids
0045-7930,
7
, pp.
79
96
.
28.
Crochet
,
M. J.
, and
Keunings
,
R.
, 1980, “
Die Swell of a Maxwell Fluid: Numerical Prediction
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
7
, pp.
199
212
.
29.
Dutta
,
A.
, and
Ryan
,
M. E.
, 1982, “
Dynamics of a Creeping Newtonian Jet With Gravity and Surface Tension: A Finite Difference Technique for Solving Steady Free-Surface Flows Using Orthogonal Curvilinear Coordinates
,”
Am. Inst. Chem. Eng. J.
,
28
, pp.
220
232
.
30.
Crochet
,
M. J.
, and
Keunings
,
R.
, 1982, “
On Numerical Die Swell Calculation
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
10
, pp.
85
94
.
31.
Crochet
,
M. J.
, and
Keunings
,
R.
, 1982, “
Finite Element Analysis of Die Swell of a Highly Elastic Fluid
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
10
, pp.
339
356
.
32.
Ahn
,
Y. C.
, and
Ryan
,
M. E.
, 1991, “
A Finite Difference Analysis of the Extrudate Swell Problem
,”
Int. J. Numer. Methods Fluids
0271-2091,
13
, pp.
1289
1310
.
33.
Tomé
,
M. F.
,
Duffy
,
B.
, and
McKee
,
S.
, 1996, “
A Numerical Technique for Solving Unsteady Non-Newtonian Free Surface Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
62
, pp.
9
34
.
34.
Gifford
,
W. A.
, 1998, “
The Effect of Surface Tension on Extrudate Swell From Square and Retangular Channels
,”
Polym. Eng. Sci.
0032-3888,
38
(
7
), pp.
1167
1174
.
35.
Georgiou
,
G. C.
, and
Boudouvis
,
A. G.
, 1999, “
Converged Solutions of the Newtonian Extrudate-Swell Problem
,”
Int. J. Numer. Methods Fluids
0271-2091,
29
, pp.
363
371
.
36.
Tomé
,
M. F.
,
Castelo
,
A.
,
Cuminato
,
J. A.
,
Mangiavacchi
,
N.
, and
McKee
,
S.
, 2001, “
GENSMAC3D: A Numerical Method for Solving Unsteady Three-Dimensional Free Surface Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
37
, pp.
747
796
.
You do not currently have access to this content.