The exact response of a translating string with constant tension and arbitrarily varying length is determined under general initial conditions and external excitation. The governing equation is transformed to a standard hyperbolic equation using characteristic transformation. The domain of interest for the transformed equation is divided into groups of subdomains according to the properties of wave propagation. d’Alembert’s solution for any point in the zeroth subdomain group is obtained by using the initial conditions. The solution is extended to the whole domain of interest by using the boundary conditions, and a recursive mapping is found for the solution in the second and higher groups of subdomains. The least upper bound of the displacement of the freely vibrating string is obtained for an arbitrary movement profile. The forced response of the string with nonhomogeneous boundary conditions is obtained using a transformation method and the direct wave method. A new method is used to derive the rate of change of the vibratory energy of the translating string from the system viewpoint. Three different approaches are used to derive and interpret the rate of change of the vibratory energy of the string within a control volume, and the energy growth mechanism of the string during retraction is elucidated. The solution methods are applied to a moving elevator cable with variable length. An interesting parametric instability phenomenon in a translating string with sinusoidally varying length is discovered.

1.
Mote
,
C. D.
, Jr.
, 1971, “
Dynamic Stability of Axially Moving Materials
,”
Shock Vib. Dig.
0583-1024,
4
(
4
), pp.
2
11
.
2.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1988, “
Current Research on the Vibration and Stability of Axially-Moving Materials
,”
Shock Vib. Dig.
0583-1024,
20
, pp.
3
13
.
3.
Zhu
,
W. D.
, 2000, “
Vibration and Stability of Time-Dependent Translating Media
,”
Shock Vib. Dig.
0583-1024,
32
(
5
), pp.
369
397
.
4.
Chen
,
L. Q.
, 2005, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
Appl. Mech. Rev.
0003-6900,
58
, pp.
91
116
.
5.
Miranker
,
W. L.
, 1960, “
The Wave Motion in a Medium in Motion
,”
IBM J. Res. Dev.
0018-8646,
4
, pp.
36
42
.
6.
McIver
,
D. B.
, 1973, “
Hamilton’s Principle for Systems of Changing Mass
,”
J. Eng. Math.
0022-0833,
7
(
3
), pp.
249
261
.
7.
Swope
,
R. D.
, and
Ames
,
W. F.
, 1963, “
Vibrations of a Moving Threadline
,”
J. Franklin Inst.
0016-0032,
275
, pp.
36
55
.
8.
Tan
,
C. A.
, and
Ying
,
S.
, 1997, “
Dynamic Analysis of the Axially Moving String Based on Wave Propagation
,”
ASME J. Appl. Mech.
0021-8936,
64
(
2
), pp.
394
400
.
9.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1991, “
Response and Discretization Methods for Axially-Moving Materials
,”
Appl. Mech. Rev.
0003-6900,
44
(
11
), pp.
279
284
.
10.
Chen
,
J. S.
, 1997, “
Natural Frequencies and Stability of an Axially Traveling String in Contact With a Stationary Load System
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
152
157
.
11.
Jha
,
R. K.
, and
Parker
,
R. G.
, 2000, “
Spatial Discretization of Axially Moving Media Vibration Problems
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
290
294
.
12.
Carrier
,
G. F.
, 1949, “
The Spaghetti Problem
,”
Am. Math. Monthly
,
56
, pp.
669
672
.
13.
Schaffers
,
W. J.
, 1961, “
The Vibration of Shaft Ropes With Time-Variable Length, Treated by Means of Riemann’s Method
,”
ASME J. Eng. Ind.
0022-0817,
83
, pp.
68
72
.
14.
Ram
,
Y. M.
, and
Caldwell
,
J.
, 1996, “
Free Vibration of a String With Moving Boundary Conditions by the Methods of Distorted Images
,”
J. Sound Vib.
0022-460X,
194
(
1
), pp.
35
47
.
15.
Zhu
,
W. D.
, and
Guo
,
B. Z.
, 1998, “
Free and Forced Vibration of an Axially Moving String With an Arbitrary Velocity Profile
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
901
907
.
16.
Zhu
,
W. D.
, and
Chen
,
Y.
, 2005, “
Forced Response of Translating Media With Variable Length and Tension
,”
Proc. Inst. Mech. Eng., Part K (Journal of Multibody Dynamics)
,
219
, pp.
35
53
.
17.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1989, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
0001-4966,
85
, pp.
1365
1368
.
18.
Lee
,
S. Y.
, and
Mote
,
C. D.
, 1997, “
A Generalized Treatment of the Energetics of Translating Continua, Part I: Strings and Tensioned Pipes
,”
J. Sound Vib.
0022-460X,
204
, pp.
735
753
.
19.
Renshaw
,
A. A.
,
Rahn
,
C. D.
,
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
, 1998, “
Energy and Conserved Functionals for Axially Moving Materials
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
634
636
.
20.
Zhu
,
W. D.
, 2002, “
Control Volume and System Formulations for Translating Media and Stationary Media With Moving Boundaries
,”
J. Sound Vib.
0022-460X,
254
(
1
), pp.
189
201
.
21.
Cooper
,
J.
, 1993, “
Asymptotic Behavior for the Vibration String With a Moving Boundary
,”
J. Math. Anal. Appl.
0022-247X,
174
, pp.
67
87
.
22.
Zhu
,
W. D.
, and
Ni
,
J.
, 2000, “
Energetics and Stability of Translating Media With an Arbitrarily Varying Length
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
295
304
.
23.
Zhu
,
W. D.
, and
Chen
,
Y.
, 2006, “
Experimental and Theoretical Investigation of Elevator Cable Dynamics and Control
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
66
78
.
24.
Terumichi
,
Y.
,
Ohitsuka
,
M.
,
Yoshizawa
,
M.
,
Fukawa
,
Y.
, and
Tsujioka
,
Y.
, 1997, “
Nonstationary Vibrations of a String With Time-Varying Length and a Mass-Spring System Attached at the Lower End
,”
Nonlinear Dyn.
0924-090X,
12
, pp.
39
55
.
25.
Terumichi
,
Y.
,
Kaczmarczyk
,
S.
,
Turner
,
S.
,
Yoshizawa
,
M.
, and
Ostachowicz
,
W.
, 2003, “
Modelling, Simulation and Analysis Techniques in the Prediction of Non-Stationary Vibration Response of Hoist Ropes in Lift Systems
,”
Mater. Sci. Forum
0255-5476,
440–441
, pp.
497
504
.
26.
Stylianou
,
M.
, and
Tabarrok
,
B.
, 1994, “
Finite Element Analysis of An Axially Moving Beam, Part I: Time Integration
,”
J. Sound Vib.
0022-460X,
178
, pp.
433
453
.
27.
Terumichi
,
S.
,
Takehara
,
S.
,
Kaczmarczyk
,
S.
, and
Sogabe
,
K.
, 2006, “
Finite Element Approach in The Dynamic Analysis of Slender Flexible Bodies With Time Varying Length Using Multiple Nonlinear Time Scales
,”
Proceedings of the Symposium on the Mechanics of Slender Structures
.
28.
Graff
,
K. F.
, 1991,
Wave Motion in Elastic Solids
,
Dover
,
New York
, pp.
13
17
.
29.
Meirovitch
,
L.
, 1966,
Analytical Methods in Vibrations
,
MacMillan
,
New York
, pp.
300
308
.
30.
Levine
,
H.
, 1978,
Unidirectional Wave Motions
,
Elsevier
,
North-Holland
, pp.
153
156
.
You do not currently have access to this content.