In this study, the vibration tailoring problem is analytically solved for the polar orthotropic circular plate with translational spring along its circumference. By using the semi-inverse method and postulating the mode shape as a polynomial, we derive a closed-form solution.

1.
Leissa
,
W.
, 1969, “
Vibrations of Plates
,” NASA No. SP 160.
2.
Gupta
,
U. S.
,
Lal
,
R.
, and
Jain
,
S. K.
, 1991, “
Buckling and Vibrations of Polar Orthotropic Circular Plates of Linearly Varying Thickness Resting on an Elastic Foundation
,”
J. Sound Vib.
0022-460X,
147
, pp.
423
434
.
3.
Chen
,
D. Y.
, 1997, “
Axisymmetric Vibration of Circular and Annular Plates With Arbitrary Varying Thickness
,”
J. Sound Vib.
0022-460X,
206
, pp.
114
121
.
4.
Gupta
,
U. S.
, and
Ansari
,
A. H.
, 1997, “
Asymmetric Vibrations of Polar Orthotropic Circular Plates of Parabolically Varying Profile With Restrained Elastic Edge
,”
Indian J. Pure Appl. Math.
0019-5588,
28
(
11
), pp.
1513
1534
.
5.
Luisoni
,
L. E.
, and
Laura
,
P. A. A.
, 1981, “
Vibrations of Rectangularly Orthotropic, Circular Plates With Edges Elastically Restrained Against Rotation
,”
Fiber Sci. Technology
,
15
, pp.
1
11
.
6.
Narita
,
Y.
, and
Leissa
,
A. W.
, 1981, “
Flexural Vibrations of Free Circular Plates Elastically Constrained Along Parts of the Edge
,”
Int. J. Solids Struct.
0020-7683,
17
, pp.
83
92
.
7.
Avalos
,
D. R.
, and
Laura
,
P. A. A.
, 1981, “
Transverse Vibrations of Polar Orthotropic, Annular Plates Elastically Restrained Against Rotation Along the Edges
,”
Fiber Sci. Technology
,
14
, pp.
59
67
.
8.
Elishakoff
,
I.
, 1987, “
Adjustable Parameter Method for Vibration of Polar Orthotropic Plates
,”
J. Sound Vib.
0022-460X,
116
(
1
), pp.
181
184
.
9.
Gunaratnam
,
D. J.
, and
Bhattacharya
,
A. P.
, 1989, “
Transverse Vibrations and Stability of Polar Orthotropic Circular Plates: High-Level Relationships
,”
J. Sound Vib.
0022-460X,
132
(
3
), pp.
383
392
.
10.
Elishakoff
,
I.
, and
Meyer
,
D.
, 2005, “
Inverse Vibration Problem for Inhomogeneous Circular Plate With Translational Spring
,”
J. Sound Vib.
0022-460X,
285
, pp.
1192
1202
.
11.
Pardoen
,
G. C.
, 1974, “
Vibrations and Buckling Analysis of Axisymmetric Polar Orthotropic Circular Plates
,”
Comput. Struct.
0045-7949,
4
(
5
), pp.
951
960
.
12.
Glukharev
,
K. K.
,
Rosenberg
,
D. E.
, and
Frolov
,
K. B.
, 1975, “
An Inverse Problem of Dynamics in Connection With System Identification. Method of Dynamic Simulation
,”
VII Internationale Konferenz über Nichtlineare Schwingungen, Band II
,
Akademic
,
Berlin
, Vol.
1
, pp.
331
345
.
13.
Bertrand
,
M. J.
, 1873, “
Theoreme Relatif au Movement d’un Point Attire Verse un Centre Fixe
,”
Compt. Rend.
0001-4036,
77
.
You do not currently have access to this content.