Knowledge of the size effect on the strength of hybrid bimaterial joints of steel and fiber composites is important for new designs of large lightweight ships, large fuel-efficient aircrafts, and lightweight crashworthy automobiles. Three series of scaled geometrically similar specimens of symmetric double-lap joints with a rather broad size range (1:12) are manufactured. The specimens are tested to failure under tensile displacement-controlled loading, and at rates that ensure the peak load to be reached within approximately the same time. Two series, in which the laminate is fiberglass G-10/FR4, are tested at Northwestern University, and the third series, in which the laminate consists of NCT 301 carbon fibers, is tested at the University of Michigan. Except for the smallest specimens in test series I, all the specimens fail by propagation of interface fracture initiating at the bimaterial corner. All the specimens fail dynamically right after reaching the maximum load. This observation confirms high brittleness of the interface failure. Thus, it is not surprising that the experiments reveal a marked size effect, which leads to a 52% reduction in nominal interface shear strength. As far as the inevitable scatter permits it to see, the experimentally observed nominal strength values agree with the theoretical size effect derived in Part II of this study, where the size exponent of the theoretical large-size asymptotic power law is found to be −0.459 for series I and II, and −0.486 for series III.

1.
Barsoum
,
R. S.
, 2003, “
The Best of Both Worlds: Hybrid Ship Hulls Use Composites & Steel
,”
The AMPTIAC Quarterly
,
7
(
3
), pp.
55
61
.
2.
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Z.
, 1996, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
(
3
), pp.
317
324
.
3.
Bažant
,
Z. P.
,
Kim
,
J. -J. H.
,
Daniel
,
I. M.
,
Becq-Giraudon
,
E.
, and
Zi
,
G.
, 1999, “
Size Effect on Compression Strength of Fiber Composites Failing by Kink Band Propagation
,”
Int. J. Fract.
0376-9429,
95
, pp.
103
141
.
4.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Daniel
,
I. M.
,
Caner
,
F. C.
, and
Yu
,
Q.
, 2006, “
Size Effect on Strength of Laminate-Foam Sandwich Plates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
366
374
.
5.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Novák
,
D.
, and
Daniel
,
I. M.
, 2004, “
Size Effect on Flexural Strength of Fiber-Composite Laminate
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
29
37
.
6.
Bažant
,
Z. P.
, 1984, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
0733-9399,
110
(
4
), pp.
518
535
.
7.
Bažant
,
Z. P.
, 1997, “
Scaling of Quasibrittle Fracture: Asymptotic Analysis
,”
Int. J. Fract.
0376-9429,
83
(
1
), pp.
19
40
.
8.
Bažant
,
Z. P.
, 2002,
Scaling of Structural Strength
, 2nd ed.,
Elsevier
,
London, UK
.
9.
Bažant
,
Z. P.
, 2004, “
Scaling Theory for Quasibrittle Structural Failure
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
101
(
37
), pp.
13400
13407
.
10.
RILEM Committee TC QFS
, 2004, “
Quasibrittle Fracture Scaling and Size Effect—Final Report
,”
Mater. Struct.
1359-5997,
37
(
272
), pp.
547
586
.
11.
Melograna
,
J. D.
, and
Grenested
,
J. L.
, 2002, “
Adhesion of Stainless Steel to Fiber Reinforced Vinyl-Ester Composite
,”
J. Compos. Technol. Res.
0884-6804,
24
(
4
), pp.
254
260
.
12.
Bahei-El-Din
,
Y. A.
, and
Dvorak
,
G. J.
, 2001, “
New Designs of Adhesive Joints for Thick Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
19
40
.
13.
Dvorak
,
G. J.
,
Zhang
,
J.
, and
Canyurt
,
O.
, 2001, “
Adhesive Tongue-and-Groove Joints for Thick Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
61
, pp.
1123
1142
.
14.
Liu
,
D.
, and
Fleck
,
N. A.
, 1999, “
Scale Effect in the Initiation of Cracking of a Scarf Joint
,”
Int. J. Fract.
0376-9429,
95
, pp.
67
88
.
15.
Grenestedt
,
J. L.
, and
Hallstrom
,
S.
, 1997, “
Crack Initiation From Homogeneous and Bi-Material Corners
,”
ASME J. Appl. Mech.
0021-8936,
64
(
4
), pp.
811
818
.
16.
Groth
,
H. L.
, 1988, “
Stress Singularities and Fracture at Interface Corners in Bonded Joints
,”
Int. J. Adhes. Adhes.
0143-7496,
8
(
2
), pp.
107
113
.
17.
Malyshev
,
B. M.
, and
Salganik
,
R. L.
, 1965, “
The Strength of Adhesive Joints Using the Theory of Cracks
,”
Int. J. Fract. Mech.
0020-7268,
1
, pp.
114
128
.
18.
Achenbach
,
J. D.
,
Keer
,
L. M.
,
Khetan
,
R. P.
, and
Chen
,
S. H.
, 1979, “
Loss of Adhesion at the Tip of an Interfacial Crack
,”
J. Elast.
0374-3535,
9
(
4
), pp.
397
424
.
19.
Comninou
,
M.
, 1978, “
The Interfacial Crack in a Shear Field
,”
ASME J. Appl. Mech.
0021-8936,
45
, pp.
287
290
.
20.
Comninou
,
M.
, 1977, “
The Interfacial Crack
,”
ASME J. Appl. Mech.
0021-8936,
44
, pp.
631
636
.
21.
Rice
,
J. R.
, 1988, “
Elastic Fracture Mechanics Concepts for Interface Cracks
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
98
103
.
22.
Hutchinson
,
J. W.
,
Mear
,
M. E.
, and
Rice
,
J. R.
, 1987, “
Crack Paralleling an Interface Between Dissimilar Materials
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
828
832
.
23.
Suo
,
Z.
, 1990, “
Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media
,”
Proc. R. Soc. London, Ser. A
0950-1207,
427
, pp.
331
358
.
24.
Agrawal
,
A.
, and
Karlsson
,
A. M.
, 2006, “
Obtaining Model Mixity for a Bimaterial Interface Cracks Using the Virtual Crack Closure Technique
,”
Int. J. Fract.
0376-9429,
141
, pp.
75
98
.
25.
Ritchie
,
R. O.
,
Knott
,
J. F.
, and
Rice
,
J. R.
, 1973, “
On the Relation Between Critical Tensile Stress and Fracture Toughness in Mild Steel
,”
J. Mech. Phys. Solids
0022-5096,
21
, pp.
395
410
.
26.
Kosai
,
M.
,
Kobayashi
,
A. S.
, and
Ramulu
,
M.
, 1993, “
Tear Straps in Airplane Fuselage
,”
Durability of Metal Aircraft Structures
,
Atlanta Technology
,
Atlanta, GA
, pp.
443
457
.
27.
Bažant
,
Z. P.
, and
Yu
,
Q.
, 2006, “
Size Effect on Strength of Quasibrittle Structures With Reentrant Corners Symmetrically Loaded in Tension
,”
J. Eng. Mech.
0733-9399,
132
(
11
), pp.
1168
1176
.
28.
Bažant
,
Z. P.
, and
Planas
,
J.
, 1998,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC
,
Boca Raton, FL
.
29.
Tang
,
T.
,
Bažant
,
Z. P.
,
Yang
,
S.
, and
Zollinger
,
D.
, 1996, “
Variable-Notch One-Size Test Method for Fracture Energy and Process Zone Length
,”
Eng. Fract. Mech.
0013-7944,
55
(
3
), pp.
383
404
.
30.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Le
,
J. -L.
, and
Yu
,
Q.
, 2008, “
Scaling of Strength of Metal-Composite Joints
,”
Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Schaumburg, IL, Apr. 7–10, Paper No. 2093.
31.
Godwin
,
E. W.
, 2000, “
Tension
,”
Mechanical Testing of Advanced Fiber Composites
,
J. M.
Hodgkinson
, ed.,
CRC
,
Boca Raton, FL
, pp.
43
74
.
32.
Broughton
,
W. R.
, 2000, “
Through-Thickness Testing
,”
Mechanical Testing of Advanced Fiber Composites
,
J. M.
Hodgkinson
, ed.,
CRC
,
Boca Raton, FL
, pp.
143
169
.
33.
Bažant
,
Z. P.
, and
Cedolin
,
L.
, 1991,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
,
Oxford University
,
New York
.
34.
Le
,
J. -L.
,
Bažant
,
Z. P.
, and
Yu
,
Q.
, 2010, “
Scaling of Strength of Metal-Composite Joints—Part II: Interface Fracture Analysis
,”
ASME J. Appl. Mech.
0021-8936,
77
, p.
011012
.
35.
Beghini
,
A.
,
Cusatis
,
G.
, and
Bažant
,
Z. P.
, 2008, “
Spectral Stiffness Microplane Model for Quasibrittle Composite Laminates—Part II: Calibration and Validation
,”
ASME J. Appl. Mech.
0021-8936,
75
(
2
), p.
021010
.
You do not currently have access to this content.