This paper studies the free vibration of circular toroidal sectors with circular cross-sections based on the three-dimensional small-strain, linear elasticity theory. A set of orthogonal coordinates, composing the polar coordinate (r,θ) with the origin on the cross-sectional centerline of the sector and the circumferential coordinate φ with the origin at the curvature center of the centerline, is developed to describe the displacements, strains, and stresses in the sector. Each of the displacement components is taken as a product of four functions: a set of Chebyshev polynomials in φ and r coordinates, a set of trigonometric series in θ coordinate, and a boundary function in terms of φ. Frequency parameters and mode shapes have been obtained via a displacement-based extremum energy principle. The upper bound convergence of the first eight frequency parameters accurate up to five figures has been achieved. The present results agree with those from the finite element solutions. The effect of the ratio of curvature radius R to the cross-sectional radius a and the subtended angle φ0 on the frequency parameters of the sectors are discussed in detail. The three-dimensional vibration mode shapes are also plotted.

1.
Lamb
,
H.
, 1887, “
On the Flexure and the Vibrations of a Curved Bar
,”
Proc. London Math. Soc.
0024-6115,
s1-19
, pp.
365
377
.
2.
Love
,
A. E. H.
, 1892, “
On the Vibrations of an Elastic Circular Ring (Abstract)
,”
Proc. London Math. Soc.
0024-6115,
s1-24
, pp.
118
120
.
3.
Chidamparam
,
P.
, and
Leissa
,
A. W.
, 1993, “
Vibrations of Planar Curved Beams, Rings and Arches
,”
Appl. Mech. Rev.
0003-6900,
46
, pp.
467
483
.
4.
Eisenberger
,
M.
, and
Efraim
,
E.
, 2001, “
In-Plane Vibrations of Shear Deformable Curved Beams
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
, pp.
1221
1234
.
5.
Montalvão e Silva
,
J. M. M.
, and
Urgueira
,
A. P. V.
, 1988, “
Out-of-Plane Dynamic Response of Curved Beams—An Analytical Model
,”
Int. J. Solids Struct.
0020-7683,
24
, pp.
271
284
.
6.
Irie
,
T.
,
Yamada
,
G.
, and
Tanaka
,
K.
, 1982, “
Natural Frequencies of Out-of-Plane Vibration of Arcs
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
910
913
.
7.
Irie
,
T.
,
Yamada
,
G.
, and
Tanaka
,
K.
, 1983, “
Natural Frequencies of In-Plane Vibrations of Arcs
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
449
452
.
8.
Archer
,
R. R.
, 1960, “
Small Vibrations of Thin Incomplete Circular Rings
,”
Int. J. Mech. Sci.
0020-7403,
1
, pp.
45
56
.
9.
Veletsos
,
A. S.
, and
Austin
,
W. J.
, 1972, “
Free in-Plane Vibrations of Circular Arches
,” ASCE
J. Eng. Mech.
0733-9399,
98
, pp.
311
329
.
10.
Austin
,
W. J.
, and
Veletsos
,
A. S.
, 1973, “
Free Vibration of Arches Flexible in Shear
,” ASCE
J. Eng. Mech.
0733-9399,
99
, pp.
735
753
.
11.
Hutchinson
,
J. R.
, 1972, “
Axisymmetric Vibrations of a Free Finite Length Rod
,”
J. Acoust. Soc. Am.
0001-4966,
51
, pp.
233
240
.
12.
Hutchinson
,
J. R.
, 1980, “
Vibrations of Solid Cylinders
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
901
907
.
13.
Leissa
,
A. W.
, and
Zhang
,
Z. D.
, 1983, “
On the Three-Dimensional Vibrations of the Cantilevered Rectangular Parallelepiped
,”
J. Acoust. Soc. Am.
0001-4966,
73
, pp.
2013
2021
.
14.
Lim
,
C. W.
, 1999, “
Three-Dimensional Vibration Analysis of a Cantilevered Parallelepiped: Exact and Approximate Solutions
,”
J. Acoust. Soc. Am.
0001-4966,
106
, pp.
3375
3381
.
15.
Hutchinson
,
J. R.
, 1981, “
Transverse Vibrations of Beams, Exact Versus Approximate Solutions
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
923
928
.
16.
Leissa
,
A. W.
, and
So
,
J.
, 1995, “
Comparisons of Vibration Frequencies for Rods and Beams From One-Dimensional and Three-Dimensional Analysis
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
2122
2135
.
17.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
, 1995, “
Modeling Three-Dimensional Vibration of Elliptic Bars
,”
J. Acoust. Soc. Am.
0001-4966,
98
, pp.
1518
1526
.
18.
Liew
,
K. M.
,
Hung
,
K. C.
, and
Lim
,
M. K.
, 1998, “
Vibration of Thick Prismatic Structures With Three-Dimensional Flexibility
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
619
625
.
19.
Zhou
,
D.
,
Cheung
,
Y. K.
,
Lo
,
S. H.
, and
Au
,
F. T. K.
, 2003, “
3-D Vibration Analysis of Solid And Hollow Circular Cylinders via Chebyshev–Ritz Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
1575
1589
.
20.
Zhou
,
D.
,
Au
,
F. T. K.
,
Lo
,
S. H.
, and
Cheung
,
Y. K.
, 2002, “
Three-Dimensional Vibration Analysis of a Thick Torus With Circular Cross-Section
,”
J. Acoust. Soc. Am.
0001-4966,
112
, pp.
2831
2839
.
21.
Kang
,
J. H.
, and
Leissa
,
A. W.
, 2006, “
Natural Frequencies of Thick, Complete, Circular Rings With an Elliptical or Circular Cross-Section From a Three-Dimensional Theory
,”
Arch. Appl. Mech.
0939-1533,
75
, pp.
425
439
.
22.
Kang
,
J. H.
, and
Leissa
,
A. W.
, 2000, “
Three-Dimensional Vibrations of Thick, Circular Rings With Isosceles Trapezoidal and Triangular Cross-Sections
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
132
139
.
23.
Buchanan
,
G. R.
, and
Liu
,
Y. J.
, 2005, “
An Analysis of the Free Vibration of Thick-Walled Isotropic Toroidal Shells
,”
Int. J. Mech. Sci.
0020-7403,
47
, pp.
277
292
.
You do not currently have access to this content.