A nonlinear, planar model of a slack cable with bending stiffness and arbitrarily moving ends is developed. The model uses the slope angle of the centroid line of the cable to describe the motion of the cable, and the resulting integropartial differential equation with constraints is derived using Hamilton’s principle. A new method is developed to obtain the spatially discretized equations, and the Baumgarte stabilization procedure is used to solve the resulting differential-algebraic equations. The model can be used to calculate the equilibria and corresponding free vibration characteristics of the cable, as well as the dynamic response of the cable under arbitrarily moving ends. The results for an equilibrium and free vibration characteristics around the equilibrium are experimentally validated on a laboratory steel band. The methodology is applied to elevator traveling and compensation cables. It is found that a vertical motion of the car can introduce a horizontal vibration of a traveling or compensation cable. The results presented are verified by a commercial finite element software. The current method is shown to be more efficient than the finite element method as it uses a much smaller number of elements to reach the same accuracy. Some other interesting features include the condition for a traveling or compensation cable equilibrium to be closest to a natural loop and a direct proof that the catenary solution is unique.

1.
Zhu
,
W. D.
, and
Chen
,
Y.
, 2005, “
Forced Response of Translating Media With Variable Length and Tension: Application to High-Speed Elevators
,”
Proc. Inst. Mech. Eng., Part K: J. Multibody Dynamics
,
219
, pp. 35–52.
2.
Zhu
,
W. D.
, and
Chen
,
Y.
, 2006, “
Theoretical and Experimental Investigation of Elevator Cable Dynamics and Control
,”
ASME J. Vibr. Acoust.
JVACEK 0739-3717,
128
(
1
), pp. 66–78.
3.
Irvine
,
H. M.
, and
Caughey
,
T. K.
, 1974, “
The Linear Theory of Free Vibrations of a Suspended Cable
,”
Proc. R. Soc. London, Ser. A
PRLAAZ 0950-1207,
341
, pp. 299–315.
4.
Irvine
,
H. M.
, 1981,
Cable Structures
,
Dover
,
New York
.
5.
Irvine
,
H. M.
, 1993, “
Local Bending Stresses in Cables
,”
Int. J. Offshore Polar Eng.
IOPEE7 1053-5381,
3
(
3
), pp. 172–175.
6.
Triantafyllou
,
M. S.
, 1984, “
The Dynamics of Taut Inclined Cables
,”
Q. J. Mech. Appl. Math.
QJMMAV 0033-5614,
37
(
3
), pp. 421–440.
7.
Triantafyllou
,
M. S.
, and
Grinfogel
,
L.
, 1986, “
Natural Frequencies and Modes of Inclined Cables
,”
J. Struct. Eng.
JSENDH 0733-9445,
112
(
1
), pp. 139–148.
8.
Perkins
,
N. C.
, and
Mote
,
C. D.
, Jr.
, 1987, “
Three-Dimensional Vibration of Traveling Elastic Cables
,”
J. Sound Vib.
JSVIAG 0022-460X,
114
(
2
), pp. 325–340.
9.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
, pp. 381–454.
10.
Antman
,
S. S.
, 2005,
Nonlinear Problems of Elasticity
,
Springer
,
New York
, pp. 261–358.
11.
Svetlitsky
,
V. A.
, 2005,
Dynamics of Rods
,
Springer
,
New York
, pp. 9–45.
12.
Goyal
,
S.
, 2006, “
A Dynamic Rod Model to Simulate Mechanics of Cables and DNA
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
13.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
, 2008, “
Nonlinear Dynamic Intertwining of Rods With Self-Contact
,”
Int. J. Non-Linear Mech.
IJNMAG 0020-7462,
43
(
1
), pp. 65–73.
14.
Kim
,
J. S.
, and
Chirikjian
,
G. S.
, 2006, “
Conformational Analysis of Stiff Chiral Polymers With End-Constraints
,”
Mol. Simul.
MOSIEA 0892-7022,
32
(
14
), pp. 1139–1154.
15.
Santillan
,
S.
,
Virgin
,
L. N.
, and
Plaut
,
R. H.
, 2005, “
Equilibria and Vibration of a Heavy Pinched Loop
,”
J. Sound Vib.
JSVIAG 0022-460X,
288
(
1–2
), pp. 81–90.
16.
Crisfield
,
M. A.
, 1991,
Non-Linear Finite Element Analysis of Solids and Structures
, Vols. I and II,
Wiley
,
New York
.
17.
Shabana
,
A. A.
, 1998,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge
, pp. 270–344.
18.
Reissner
,
E.
, 1972, “
On One-Dimensional Finite-Strain Beam Theory: The Plane Problem
,”
Z. Angew. Math. Phys.
ZAMPA8 0044-2275,
23
, pp. 795–804.
19.
Simo
,
J. C.
, 1985, “
A Finite Strain Beam Formulation, the Three Dimensional Problem. Part I
,”
Comput. Methods Appl. Mech. Eng.
CMMECC 0045-7825,
49
, pp. 55–70.
20.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
Three Dimensional Finite Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
CMMECC 0045-7825,
58
, pp. 79–116.
21.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
JMDEDB 0161-8458,
123
, pp. 606–613.
22.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implements and Applications
,”
ASME J. Mech. Des.
JMDEDB 0161-8458,
123
, pp. 614–621.
23.
von Dombrowski
,
S.
, 2002, “
Analysis of Large Flexible Body Deformation in Multi-Body Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
MSDYFC 1384-5640,
8
, pp. 409–432.
24.
Hairer
,
E.
, and
Wanner
,
G.
, 1996,
Solving Ordinary Differential Equations II, Stiffness and Differential Algebraic Problems
,
Springer-Verlag
,
Berlin
, p. 470.
25.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
, 1997,
Mechanics of Materials
,
PWS
,
Boston, MA
, pp. 461–465.
26.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1970,
Theory of Elasticity
,
Pergamon
,
Oxford
, pp. 68–78.
27.
Goldstein
,
H.
,
Poole
,
C.
, and
Safko
,
J.
, 2002,
Classical Mechanics
,
Addison-Wesley
,
New York
, pp. 45–49.
28.
Antman
,
S. S.
, 1979, “
Multiple Equilibrium States of Nonlinearly Elastic Strings
,”
SIAM J. Appl. Math.
SMJMAP 0036-1399,
37
(
3
), pp. 588–604.
29.
Dickey
,
R. W.
, 1969, “
The Nonlinear String Under a Vertical Force
,”
SIAM J. Appl. Math.
SMJMAP 0036-1399,
17
(
1
), pp. 172–178.
30.
Gatti-Bono
,
C.
, and
Perkins
,
N. C.
, 2002, “
Dynamical Analysis of Loop Formation in Cables Under Compression
,”
Int. J. Offshore Polar Eng.
IOPEE7 1053-5381,
12
(
3
), pp. 217–222.
31.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
, 2005, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
JCTPAH 0021-9991,
209
(
1
), pp. 371–389.
32.
Ewins
,
D. J.
, 2000,
Theory, Practice and Application
,
Research Studies
,
Baldock, Hertfordshire, UK
.
You do not currently have access to this content.