Void growth in an anisotropic ductile solid is studied by numerical analyses for three-dimensional (3D) unit cells initially containing a void. The effect of plastic anisotropy on void growth is the main focus, but the studies include the effects of different void shapes, including oblate, prolate, or general ellipsoidal voids. Also, other 3D effects such as those of different spacings of voids in different material directions and the effects of different macroscopic principal stresses in three directions are accounted for. It is found that the presence of plastic anisotropy amplifies the differences between predictions obtained for different initial void shapes. Also, differences between principal transverse stresses show a strong interaction with the plastic anisotropy, such that the response is very different for different anisotropies. The studies are carried out for one particular choice of void volume fraction and stress triaxiality.

References

1.
McClintock
,
F. A.
,
1968
, “
A Criterion for Ductile Fracture by Growth of Holes
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
363
371
.
2.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.
3.
Garrison
,
W. M.
, Jr
., and
Moody
,
N. R.
,
1987
, “
Ductile Fracture
,”
J. Phys. Chem. Solids
,
48
(
11
), pp.
1035
1074
.
4.
Tvergaard
,
V.
,
1990
, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
27
, pp.
83
151
.
5.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.
6.
Benzerga
,
A. A.
,
Leblond
,
J. B.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
2016
, “
Ductile Failure Modeling
,”
Int. J. Fract.
,
201
(
1
), pp.
29
80
.
7.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
8.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.
9.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
.
10.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. London, A
,
193
(
1033
), pp.
281
297
.
11.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
12.
Benzerga
,
A. A.
, and
Besson
,
J.
,
2001
, “
Plastic Potentials for Anisotropic Porous Solids
,”
Eur. J. Mech. A
,
20
(
3
), pp.
397
434
.
13.
Keralavarma
,
S. M.
, and
Benzerga
,
A. A.
,
2010
, “
A Constitutive Model for Plastically Anisotropic Solids With Non-Spherical Voids
,”
J. Mech. Phys. Solids
,
58
(
6
), pp.
874
901
.
14.
Morin
,
L.
,
Madou
,
K.
,
Leblond
,
J.-B.
, and
Kondo
,
D.
,
2014
, “
A New Technique for Finite Element Limit-Analysis of Hill Materials, With an Application to the Assessment of Criteria for Anisotropic Plastic Porous Solids
,”
Int. J. Eng. Sci.
,
74
, pp.
65
79
.
15.
Steglich
,
D.
,
Wafai
,
H.
, and
Besson
,
J.
,
2010
, “
Interaction Between Anisotropic Plastic Deformation and Damage Evolution in Al 2198 Sheet Metal
,”
Eng. Fract. Mech.
,
77
(
17
), pp.
3501
3518
.
16.
Chien
,
W. Y.
,
Pan
,
J.
, and
Tang
,
S. C.
,
2001
, “
Modified Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals
,”
ASME J. Eng. Mater. Technol.
,
123
(
4
), pp.
409
416
.
17.
Wang
,
D.-A.
,
Pan
,
J.
, and
Liu
,
S.-D.
,
2004
, “
An Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals With Planar Anisotropy
,”
Int. J. Damage Mech.
,
13
(
1
), pp.
7
33
.
18.
Dæhli
,
L. E. B.
,
Faleskog
,
J.
,
Børvik
,
T.
, and
Hopperstad
,
O. S.
,
2017
, “
Unit Cell Simulations and Porous Plasticity Modelling for Strongly Anisotropic FCC Metals
,”
Eur. J. Mech. A
,
65
, pp.
360
383
.
19.
Barlat
,
F.
,
Aretz
,
H.
,
Yoon
,
J. W.
,
Karabin
,
M. E.
,
Brem
,
J. C.
, and
Dick
,
R. E.
,
2005
, “
Linear Transformation-Based Anisotropic Yield Functions
,”
Int. J. Plast.
,
21
(
5
), pp.
1009
1039
.
20.
Srivastava
,
A.
, and
Needleman
,
A.
,
2015
, “
Effect of Crystal Orientation on Porosity Evolution in a Creeping Single Crystal
,”
Mech. Mater.
,
90
, pp.
10
29
.
21.
Legarth
,
B. N.
, and
Tvergaard
,
V.
,
2010
, “
3D Analyses of Cavitation Instabilities Accounting for Plastic Anisotropy
,”
Z. Angew. Math. Mech.
,
90
(
9
), pp.
701
709
.
22.
Tvergaard
,
V.
,
1976
, “
Effect of Thickness Inhomogeneities in Internally Pressurized Elastic-Plastic Spherical Shells
,”
J. Mech. Phys. Solids
,
24
(
5
), pp.
291
304
.
23.
Dafalias
,
Y. F.
,
1985
, “
A Missing Link in the Macroscopic Constitutive Formulation of Large Plastic Deformation
,”
Plasticity Today, Modelling, Methods and Applications
,
A.
Sawczuk
and
G.
Bianchi
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
135
151
.
24.
Dafalias
,
Y. F.
,
1985
, “
The Plastic Spin
,”
ASME J. Appl. Mech.
,
52
(
4
), pp.
865
871
.
25.
Dafalias
,
Y. F.
,
1993
, “
On Multiple Spins and Texture Development. Case Study: Kinematic and Orthotropic Hardening
,”
Acta Mech.
,
100
(
3–4
), pp.
171
194
.
26.
Yamada
,
Y.
, and
Sasaki
,
M.
,
1995
, “
Elastic-Plastic Large Deformation Analysis Program and Lamina Compression Test
,”
Int. J. Mech.
,
37
(
7
), pp.
691
707
.
27.
Legarth
,
B. N.
,
2008
, “
Necking of Anisotropic Micro-Films With Strain-Gradient Effects
,”
Acta Mech. Sin.
,
24
(
5
), pp.
557
567
.
28.
Peirce
,
D.
,
Shih
,
C. F.
, and
Needleman
,
A.
,
1984
, “
A Tangent Modulus Method for Rate Dependent Solids
,”
Comput. Struct.
,
18
(
5
), pp.
875
887
.
29.
Kuroda
,
M.
, and
Tvergaard
,
V.
,
2001
, “
Plastic Spin Associated With a Non-Normality Theory of Plasticity
,”
Eur. J. Mech. A
,
20
(
6
), pp.
893
905
.
30.
McMeeking
,
R. M.
, and
Rice
,
J. R.
,
1975
, “
Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation
,”
Int. J. Solids Struct.
,
11
(
5
), pp.
601
616
.
31.
Legarth
,
B. N.
,
2007
, “
Strain-Gradient Effects in Anisotropic Materials
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
1
), pp.
S71
S81
.
32.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Slutsky
,
S.
,
1982
, “
Void Growth and Collapse in Viscous Solids
,”
Mechanics of Solids
(Rodney Hill 60th Anniversary Volume, Vol. 90),
H. G.
Hopkins
and
M. J.
Sewell
, eds., Pergamon Press, Oxford, UK, pp.
13
45
.
33.
Tvergaard
,
V.
,
2009
, “
Behaviour of Voids in a Shear Field
,”
Int. J. Fract.
,
158
(
1
), pp.
41
49
.
34.
Moen
,
L. A.
,
Langseth
,
M.
, and
Hopperstad
,
O.
,
1998
, “
Elastoplastic Buckling of Anisotropic Aluminum, Plate Elements
,”
J. Struct. Eng.
,
124
(
6
), pp.
712
719
.
35.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
,
2000
, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2467
2512
.
36.
Cao
,
T. S.
,
Mazière
,
M.
,
Danas
,
K.
, and
Besson
,
J.
,
2015
, “
A Model for Ductile Damage Prediction at Low Stress Triaxialities Incorporating Void Shape Change and Void Rotation
,”
Int. J. Solids Struct.
,
63
, pp.
240
263
.
37.
Legarth
,
B. N.
,
2004
, “
Unit Cell Debonding Analyses for Arbitrary Orientations of Plastic Anisotropy
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7267
7285
.
You do not currently have access to this content.