Compared to robots and devices made of rigid components, soft robots and flexible devices driven by soft active materials possess various advantages including high adaptability under extreme environment and compatibility with a human. Dielectric elastomer (DE) membrane, which is commonly used in building soft actuators, can achieve large actuation by the combined loadings of voltage-induced Maxwell stress and fluidic pressures (pneumatic and hydraulic pressure). This paper proposes a pneumatic–hydraulic coupled electromechanical actuator (PHCEA), which exhibits strong coupling effect of electromechanical actuation (the Maxwell stress on DE membrane), pneumatic and hydraulic pressures. Considering the moving boundary and state transition, a computational model has been developed to investigate the coupling behaviors of the PHCEA. The numerical result by this model is in accordance with the experimental measurements. The combination of experimental data and the theoretical result indicates that the state transition and moving boundary separate the potential region of electrical breakdown and mechanical damage. This model can be utilized as a practical method to characterize the performance and guide the design of soft devices. The experimental setup and computational method of the PHCEA bring new insights into the fabrication and characterization of soft robots, adaptive optics, and flexible bio-medical devices. The PHCEA possesses wide applications in underwater robots, soft muscles, and microfluidics systems. It can serve as the gas bladder of soft swimming robots, the soft actuator of hydraulic–pneumatic coupling systems, and the gas–liquid valve of flexible microfluidics systems.

References

1.
Ko
,
H. C.
,
Stoykovich
,
M. P.
,
Song
,
J.
,
Malyarchuk
,
V.
,
Choi
,
W. M.
,
Yu
,
C. J.
,
Geddes
,
J. B.
,
Xiao
,
J.
,
Wang
,
S.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2008
, “
A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics
,”
Nature
,
454
(
7205
), pp.
748
753
.
2.
Lu
,
T.
,
An
,
L.
,
Li
,
J.
,
Yuan
,
C.
, and
Wang
,
T. J.
,
2015
, “
Electro-Mechanical Coupling Bifurcation and Bulging Propagation in a Cylindrical Dielectric Elastomer Tube
,”
J. Mech. Phys. Solids
,
85
, pp.
160
175
.
3.
Lin
,
S.
,
Yuk
,
H.
,
Zhang
,
T.
,
Parada
,
G. A.
,
Koo
,
H.
,
Yu
,
C.
, and
Zhao
,
X.
,
2016
, “
Stretchable Hydrogel Electronics and Devices
,”
Adv. Mater.
,
28
(
22
), pp.
4497
4505
.
4.
Zhang
,
J.
,
Li
,
B.
,
Chen
,
H.
, and
Pei
,
Q.
,
2016
, “
Dissipative Performance of Dielectric Elastomers Under Various Voltage Waveforms
,”
Soft Matter
,
12
(
8
), p.
2348
.
5.
Chen
,
F.
,
Wang
,
M. Y.
,
Zhu
,
J.
, and
Zhang
,
Y. F.
,
2016
, “
Interactions Between Dielectric Elastomer Actuators and Soft Bodies
,”
Soft Rob.
,
3
(
4
), pp.
161
169
.
6.
Zhao
,
W.
,
Liu
,
L.
,
Lan
,
X.
,
Su
,
B.
,
Leng
,
J.
, and
Liu
,
Y.
,
2017
, “
Adaptive Repair Device Concept With Shape Memory Polymer
,”
Smart Mater. Struct.
,
26
(
2
), p.
025027
.
7.
Kaltseis
,
R.
,
Keplinger
,
C.
,
Koh
,
S. J. A.
,
Baumgartner
,
R.
,
Yu
,
F. G.
,
Ng
,
W. H.
,
Kogler
,
A.
,
Trols
,
A.
,
Foo
,
C. C.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2014
, “
Natural Rubber for Sustainable High-Power Electrical Energy Generation
,”
RSC Adv.
,
4
(
53
), pp.
27905
27913
.
8.
Liang
,
X.
,
Cai
,
S.
,
Liang
,
X.
, and
Cai
,
S.
,
2018
, “
New Electromechanical Instability Modes in Dielectric Elastomer Balloons
,”
Int. J. Solids Struct.
,
132–133
, pp.
96
104
.
9.
Shintake
,
J.
,
Rosset
,
S.
,
Schubert
,
B.
,
Floreano
,
D.
, and
Shea
,
H.
,
2016
, “
Polymer Actuators: Versatile Soft Grippers With Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators
,”
Adv. Mater.
,
28
(
2
), pp.
231
238
.
10.
Carpi
,
F.
,
Bauer
,
S.
, and
Rossi
,
D. D.
,
2010
, “
Stretching Dielectric Elastomer Performance
,”
Science
,
330
(
6012
), pp.
1759
1761
.
11.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q. B.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
12.
Brochu
,
P.
, and
Pei
,
Q. B.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
13.
Duduta
,
M.
,
Wood
,
R. J.
, and
Clarke
,
D. R.
,
2016
, “
Multilayer Dielectric Elastomers for Fast, Programmable Actuation Without Prestretch
,”
Adv. Mater.
,
28
(
36
), pp.
8058
8063
.
14.
Li
,
T.
,
Li
,
G.
,
Liang
,
Y.
,
Cheng
,
T.
,
Dai
,
J.
,
Yang
,
X.
,
Liu
,
B.
,
Zeng
,
Z.
,
Huang
,
Z.
,
Luo
,
Y.
,
Xie
,
T.
, and
Yang
,
W.
,
2017
, “
Fast-Moving Soft Electronic Fish
,”
Sci. Adv.
,
3
(
4
), p.
e1602045
.
15.
Zhang
,
H.
,
Wang
,
M. Y.
,
Li
,
J.
, and
Zhu
,
J.
,
2016
, “
A Soft Compressive Sensor Using Dielectric Elastomers
,”
Smart Mater. Struct.
,
25
(
3
), p.
035045
.
16.
Carpi
,
F.
,
Rossi
,
D. D.
,
Kornbluh
,
R.
,
Pelrine
,
R.
, and
Sommer-Larsen
,
P.
,
2008
,
Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology
,
Elsevier
,
Oxford, UK
.
17.
Sun
,
W.
,
Liu
,
F.
,
Ma
,
Z.
,
Li
,
C.
, and
Zhou
,
J.
,
2016
, “
Soft Mobile Robots Driven by Foldable Dielectric Elastomer Actuators
,”
J. Appl. Phys.
,
120
(
8
), p.
342
.
18.
Liu
,
J.
,
Mao
,
G.
,
Huang
,
X.
,
Zou
,
Z.
, and
Qu
,
S.
,
2015
, “
Enhanced Compressive Sensing of Dielectric Elastomer Sensor Using a Novel Structure
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101004
.
19.
Shian
,
S.
,
Huang
,
J.
,
Zhu
,
S.
, and
Clarke
,
D. R.
,
2014
, “
Optimizing the Electrical Energy Conversion Cycle of Dielectric Elastomer Generators
,”
Adv. Mater.
,
26
(
38
), pp.
6617
6621
.
20.
Kornbluh
,
R. D.
,
Pelrine
,
R.
,
Prahlad
,
H.
,
Wong-Foy
,
A.
,
Mccoy
,
B.
,
Kim
,
S.
,
Eckerle
,
J.
, and
Low
,
T.
,
2011
, “
From Boots to Buoys: Promises and Challenges of Dielectric Elastomer Energy Harvesting
,”
Electroactivity Polym. Mater.
,
7976
(
10
), pp.
67
93
.
21.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Electromechanical and Dynamic Analyses of Tunable Dielectric Elastomer Resonator
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3754
3761
.
22.
Li
,
T.
,
Keplinger
,
C.
,
Baumgartner
,
R.
,
Bauer
,
S.
,
Yang
,
W.
, and
Suo
,
Z.
,
2013
, “
Giant Voltage-Induced Deformation in Dielectric Elastomers Near the Verge of Snap-Through Instability
,”
J. Mech. Phys. Solids
,
61
(
2
), pp.
611
628
.
23.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2011
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
.
24.
Niu
,
X.
,
Yang
,
X.
,
Brochu
,
P.
,
Stoyanov
,
H.
,
Yun
,
S.
,
Yu
,
Z.
, and
Pei
,
Q.
,
2012
, “
Bistable Large-Strain Actuation of Interpenetrating Polymer Networks
,”
Adv. Mater.
,
24
(
48
), pp.
6513
6519
.
25.
Acome
,
E.
,
Mitchell
,
S. K.
,
Morrissey
,
T. G.
,
Emmett
,
M. B.
,
Benjamin
,
C.
,
King
,
M.
,
Radakovitz
,
M.
, and
Keplinger
,
C.
,
2018
, “
Hydraulically Amplified Self-Healing Electrostatic Actuators With Muscle-Like Performance
,”
Science
,
359
(
6371
), pp.
61
65
.
26.
Wang
,
H.
,
Cai
,
S.
,
Carpi
,
F.
, and
Suo
,
Z.
,
2012
, “
Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
1008
.
27.
Liu
,
B.
,
Chen
,
F.
,
Wang
,
S.
,
Fu
,
Z.
,
Cheng
,
T.
, and
Li
,
T.
,
2017
, “
Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091005
.
28.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,”
J. Ration. Mech. Anal.
,
5
(6), pp.
849
914
.https://www.jstor.org/stable/24900192?seq=1#page_scan_tab_contents
29.
Eringen
,
A. C.
,
1963
, “
On the Foundations of Electroelastostatics
,”
Int. J. Eng. Sci.
,
1
(
1
), pp.
127
153
.
30.
Tiersten
,
H. F.
,
1971
, “
On the Nonlinear Equations of Thermoelectroelasticity
,”
Int. J. Eng. Sci.
,
9
(
7
), pp.
587
604
.
31.
Goulbourne
,
N.
,
Mockensturm
,
E.
, and
Frecker
,
M.
,
2005
, “
A Nonlinear Model for Dielectric Elastomer Membranes
,”
ASME J. Appl. Mech.
,
72
(
6
), pp.
899
906
.
32.
He
,
T. H.
,
Zhao
,
X. H.
, and
Suo
,
Z. G.
,
2009
, “
Dielectric Elastomer Membranes Undergoing Inhomogeneous Deformation
,”
J. Appl. Phys.
,
106
(
8
), p.
083522
.
33.
Zhao
,
X. H.
, and
Suo
,
Z. G.
,
2008
, “
Method to Analyze Programmable Deformation of Dielectric Elastomer Layers
,”
Appl. Phys. Lett.
,
93
(
25
), p.
251902
.
34.
O'Brien
,
B.
,
McKay
,
T.
,
Calius
,
E.
,
Xie
,
S.
, and
Anderson
,
I.
,
2009
, “
Finite Element Modeling of Dielectric Elastomer Minimum Energy Structures
,”
Appl. Phys. A
,
94
, pp.
507
514
.
35.
Zhu
,
J.
,
Cai
,
S. Q.
, and
Suo
,
Z. G.
,
2010
, “
Resonant Behavior of a Membrane of a Dielectric Elastomer
,”
Int. J. Solids Struct.
,
47
(
24
), pp.
3254
3262
.
36.
Liu
,
L.
,
Chen
,
H.
,
Sheng
,
J.
,
Zhang
,
J.
,
Wang
,
Y.
, and
Jia
,
S.
,
2014
, “
Effect of Temperature on the Electric Breakdown Strength of Dielectric Elastomer
,”
SPIE Electroact. Polym. Actuators Devices
,
9056
, p.
905634
.
You do not currently have access to this content.