Electrically driven dielectric elastomers (DEs) suffer from an electromechanical instability (EMI) when the applied potential difference reaches a critical value. A majority of the past investigations address the mechanics of this operational instability by restricting the kinematics to homogeneous deformations. However, a DE membrane comprising both active and inactive electric regions undergoes inhomogeneous deformation, thus necessitating the solution of a complex boundary value problem. This paper reports the numerical and experimental investigation of such DE actuators with a particular emphasis on the EMI in quasistatic mode of actuation. The numerical simulations are performed using an in-house finite element framework developed based on the field theory of deformable dielectrics. Experiments are performed on the commercially available acrylic elastomer (VHB 4910) at varying levels of prestretch and proportions of the active to inactive areas. In particular, two salient features associated with the electromechanical response are addressed: the effect of the flexible boundary constraint and the locus of the dielectric breakdown point. To highlight the influence of the flexible boundary constraint, the estimates of the threshold value of potential difference on the onset of electromechanical instability are compared with the experimental observations and with those obtained using the lumped parameter models reported previously. Additionally, a locus of localized thinning, near the boundary of the active electric region, is identified using the numerical simulations and ascertained through the experimental observations. Finally, an approach based on the Airy stress function is suggested to justify the phenomenon of localized thinning leading to the dielectric breakdown.

References

1.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.
2.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.
3.
Carpi
,
F.
,
Bauer
,
S.
, and
De Rossi
,
D.
,
2010
, “
Stretching Dielectric Elastomer Performance
,”
Science
,
330
(
6012
), pp.
1759
1761
.
4.
Gu
,
G.-Y.
,
Zhu
,
J.
,
Zhu
,
L.-M.
, and
Zhu
,
X.
,
2017
, “
A Survey on Dielectric Elastomer Actuators for Soft Robots
,”
Bioinspir. Biomim.
,
12
(
1
), p.
011003
.
5.
McKay
,
T.
,
O'Brien
,
B.
,
Calius
,
E.
, and
Anderson
,
I.
,
2010
, “
An Integrated, Self-Priming Dielectric Elastomer Generator
,”
Appl. Phys. Lett.
,
97
(
6
), p.
062911
.
6.
Li
,
B.
,
Zhang
,
J.
,
Liu
,
L.
,
Chen
,
H.
,
Jia
,
S.
, and
Li
,
D.
,
2014
, “
Modeling of Dielectric Elastomer as Electromechanical Resonator
,”
J. Appl. Phys.
,
116
(
12
), p.
124509
.
7.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.
8.
Anderson
,
I. A.
,
Gisby
,
T. A.
,
McKay
,
T. G.
,
O'Brien
,
B. M.
, and
Calius
,
E. P.
,
2012
, “
Multi-Functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines
,”
J. Appl. Phys.
,
112
(
4
), p.
041101
.
9.
Lu
,
T.
,
Shi
,
Z.
,
Shi
,
Q.
, and
Wang
,
T.
,
2016
, “
Bioinspired Bicipital Muscle With Fiber-Constrained Dielectric Elastomer Actuator
,”
Extreme Mech. Lett.
,
6
, pp.
75
81
.
10.
Xu
,
B.-X.
,
Mueller
,
R.
,
Klassen
,
M.
, and
Gross
,
D.
,
2010
, “
On Electromechanical Stability Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
97
(
16
), p.
162908
.
11.
Zhao
,
X.
,
Hong
,
W.
, and
Suo
,
Z.
,
2007
, “
Electromechanical Hysteresis and Coexistent States in Dielectric Elastomers
,”
Phys. Rev. B
,
76
(
13
), p.
134113
.
12.
Zhao
,
X.
, and
Wang
,
Q.
,
2014
, “
Harnessing Large Deformation and Instabilities of Soft Dielectrics: Theory, Experiment, and Application
,”
Appl. Phys. Rev.
,
1
(
2
), p.
021304
.
13.
Mao
,
G.
,
Huang
,
X.
,
Diab
,
M.
,
Liu
,
J.
, and
Qu
,
S.
,
2016
, “
Controlling Wrinkles on the Surface of a Dielectric Elastomer Balloon
,”
Extreme Mech. Lett.
,
9
, pp.
139
146
.
14.
Liu
,
X.
,
Li
,
B.
,
Chen
,
H.
,
Jia
,
S.
, and
Zhou
,
J.
,
2016
, “
Voltage-Induced Wrinkling Behavior of Dielectric Elastomer
,”
J. Appl. Polym. Sci.
133
(
14
), p.
43258
.
15.
Mao
,
G.
,
Xiang
,
Y.
,
Huang
,
X.
,
Hong
,
W.
,
Lu
,
T.
, and
Qu
,
S.
,
2018
, “
Viscoelastic Effect on the Wrinkling of an Inflated Dielectric-Elastomer Balloon
,”
J. Appl. Mech.
,
85
(
7
), p.
071003
.
16.
Li
,
B.
,
Chen
,
H.
,
Qiang
,
J.
,
Hu
,
S.
,
Zhu
,
Z.
, and
Wang
,
Y.
,
2011
, “
Effect of Mechanical Pre-Stretch on the Stabilization of Dielectric Elastomer Actuation
,”
J. Phys. D Appl. Phys.
,
44
(
15
), p.
155301
.
17.
Sharma
,
A. K.
,
Bajpayee
,
S.
,
Joglekar
,
D. M.
, and
Joglekar
,
M. M.
,
2017
, “
Dynamic Instability of Dielectric Elastomer Actuators Subjected to Unequal Biaxial Prestress
,”
Smart Mater. Struct.
,
26
(
11
), p.
115019
.
18.
Sharma
,
A. K.
,
Arora
,
N.
, and
Joglekar
,
M. M.
,
2018
, “
DC Dynamic Pull-In Instability of a Dielectric Elastomer Balloon: An Energy-Based Approach
,”
Proc. R. Soc. A
,
474
(
2211
), p.
20170900
.
19.
Xu
,
B.-X.
,
Mueller
,
R.
,
Theis
,
A.
,
Klassen
,
M.
, and
Gross
,
D.
,
2012
, “
Dynamic Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
100
(
11
), p.
112903
.
20.
Joglekar
,
M. M.
,
2014
, “
An Energy-Based Approach to Extract the Dynamic Instability Parameters of Dielectric Elastomer Actuators
,”
J. Appl. Mech. Trans. ASME
,
81
(
9
), p.
091010
.
21.
Joglekar
,
M. M.
,
2015
, “
Dynamic-Instability Parameters of Dielectric Elastomer Actuators With Equal Biaxial Prestress
,”
AIAA J.
,
53
(
10
), pp.
3129
3133
.
22.
Arora
,
N.
,
Kumar
,
P.
, and
Joglekar
,
M.
,
2018
, “
A Modulated Voltage Waveform for Enhancing the Travel Range of Dielectric Elastomer Actuators
,”
J. Appl. Mech.
,
85
(
11
), p.
111009
.
23.
Sharma
,
A. K.
, and
Joglekar
,
M.
,
2018
, “
Effect of Anisotropy on the Dynamic Electromechanical Instability of a Dielectric Elastomer Actuator
,”
Smart Mater. Struct.
,
28
(
1
), p.
015006
.
24.
Sharma
,
A. K.
, and
Joglekar
,
M.
,
2019
, “
A Numerical Framework for Modeling Anisotropic Dielectric Elastomers
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
402
420
.
25.
Eder-Goy
,
D.
,
Zhao
,
Y.
, and
Xu
,
B.-X.
,
2017
, “
Dynamic Pull-In Instability of a Prestretched Viscous Dielectric Elastomer Under Electric Loading
,”
Acta Mech.
,
228
(
12
), pp.
4293
4307
.
26.
Zhang
,
J.
,
Chen
,
H.
, and
Li
,
D.
,
2017
, “
Loss of Tension in Electromechanical Actuation of Fiber-Constrained Viscoelastic Dielectric Elastomers
,”
Europhys. Lett.
,
117
(
6
), p.
67004
.
27.
Patra
,
K.
, and
Sahu
,
R. K.
,
2015
, “
A Visco-Hyperelastic Approach to Modelling Rate-Dependent Large Deformation of a Dielectric Acrylic Elastomer
,”
Int. J. Mech. Mater. Des.
,
11
(
1
), pp.
79
90
.
28.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
.
29.
Huang
,
J.
,
Li
,
T.
,
Chiang
,
F.
,
Clarke
,
D. R.
, and
Suo
,
Z.
,
2012
, “
Giant, Voltage-Actuated Deformation of a Dielectric Elastomer Under Dead Load
,”
Appl. Phys. Lett.
,
100
(
4
), p.
041911
.
30.
Bense
,
H.
,
Trejo
,
M.
,
Reyssat
,
E.
,
Bico
,
J.
, and
Roman
,
B.
,
2017
, “
Buckling of Elastomer Sheets Under Non-Uniform Electro-Actuation
,”
Soft Matter
,
13
(
15
), pp.
2876
2885
.
31.
Rasti
,
P.
,
Hous
,
H.
,
Schlaak
,
H. F.
,
Kiefer
,
R.
, and
Anbarjafari
,
G.
,
2015
, “
Dielectric Elastomer Stack Actuator-Based Autofocus Fluid Lens
,”
Appl. Optics
,
54
(
33
), pp.
9976
9980
.
32.
Koh
,
S. J. A.
,
Li
,
T.
,
Zhou
,
J.
,
Zhao
,
X.
,
Hong
,
W.
,
Zhu
,
J.
, and
Suo
,
Z.
,
2011
, “
Mechanisms of Large Actuation Strain in Dielectric Elastomers
,”
J. Polym. Sci. Part B Polym. Phys.
,
49
(
7
), pp.
504
515
.
33.
Sahu
,
R. K.
,
Saini
,
A.
,
Ahmad
,
D.
,
Patra
,
K.
, and
Szpunar
,
J.
,
2016
, “
Estimation and Validation of Maxwell Stress of Planar Dielectric Elastomer Actuators
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
429
436
.
34.
McCoul
,
D.
, and
Pei
,
Q.
,
2015
, “
Tubular Dielectric Elastomer Actuator for Active Fluidic Control
,”
Smart Mater. Struct.
,
24
(
10
), p.
105016
.
35.
Zhao
,
J.
,
Wang
,
S.
,
McCoul
,
D.
,
Xing
,
Z.
,
Huang
,
B.
,
Liu
,
L.
, and
Leng
,
J.
,
2016
, “
Bistable Dielectric Elastomer Minimum Energy Structures
,”
Smart Mater. Struct.
,
25
(
075016
), p.
075016
.
36.
Zhou
,
J.
,
Hong
,
W.
,
Zhao
,
X.
,
Zhang
,
Z.
, and
Suo
,
Z.
,
2008
, “
Propagation of Instability in Dielectric Elastomers
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3739
3750
.
37.
Bozlar
,
M.
,
Punckt
,
C.
,
Korkut
,
S.
,
Zhu
,
J.
,
Chiang
,
F.
, and
Aksay
,
I. A.
,
2012
, “
Dielectric Elastomer Actuators With Elastomeric Electrodes
,”
Appl. Phys. Lett.
,
101
(
9
), p.
091907
.
38.
Park
,
H. S.
,
Suo
,
Z.
,
Zhou
,
J.
, and
Klein
,
P. A.
,
2012
, “
A Dynamic Finite Element Method for Inhomogeneous Deformation and Electromechanical Instability of Dielectric Elastomer Transducers
,”
Int. J. Solids Struct.
,
49
(
15
), pp.
2187
2194
.
39.
Qu
,
S.
, and
Suo
,
Z.
,
2012
, “
A Finite Element Method for Dielectric Elastomer Transducers
,”
Acta Mech. Solida Sin.
,
25
(
5
), pp.
459
466
.
40.
Henann
,
D. L.
,
Chester
,
S. A.
, and
Bertoldi
,
K.
,
2013
, “
Modeling of Dielectric Elastomers: Design of Actuators and Energy Harvesting Devices
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
2047
2066
.
41.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,” ,
5
(
6
), pp.
849
915
.
42.
McMeeking
,
R. M.
, and
Landis
,
C. M.
,
2005
, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
J. Appl. Mech. Trans. ASME
,
72
(
4
), pp.
581
590
.
43.
Suo
,
Z.
,
Zhao
,
X.
, and
Greene
,
W. H.
,
2008
, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
467
486
.
44.
Klinkel
,
S.
,
Zwecker
,
S.
, and
Müller
,
R.
,
2013
, “
A Solid Shell Finite Element Formulation for Dielectric Elastomers
,”
J. Appl. Mech.
,
80
(
2
), p.
021026
.
45.
Gao
,
Z.
,
Tuncer
,
A.
, and
Cuitiño
,
A. M.
,
2011
, “
Modeling and Simulation of the Coupled Mechanical–Electrical Response of Soft Solids
,”
Int. J. Plasticity
,
27
(
10
), pp.
1459
1470
.
46.
Park
,
H. S.
, and
Nguyen
,
T. D.
,
2013
, “
Viscoelastic Effects on Electromechanical Instabilities in Dielectric Elastomers
,”
Soft Matter
,
9
(
4
), pp.
1031
1042
.
47.
Vogel
,
F.
,
Göktepe
,
S.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2014
, “
Modeling and Simulation of Viscous Electro-Active Polymers
,”
Eur. J. Mech. A Solids
,
48
, pp.
112
128
.
48.
Schlögl
,
T.
, and
Leyendecker
,
S.
,
2016
, “
Electrostatic–Viscoelastic Finite Element Model of Dielectric Actuators
,”
Comput. Methods Appl. Mech. Eng.
,
299
, pp.
421
439
.
49.
Vogan
,
J. D.
,
2004
, “
Development of Dielectric Elastomer Actuators for MRI Devices
,” Master’s thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
50.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.
51.
Orita
,
A.
, and
Cutkosky
,
M. R.
,
2016
, “
Scalable Electroactive Polymer for Variable Stiffness Suspensions
,”
IEEE ASME Trans. Mechatron.
,
21
(
6
), pp.
2836
2846
.
52.
Zurlo
,
G.
,
Destrade
,
M.
,
DeTommasi
,
D.
, and
Puglisi
,
G.
,
2017
, “
Catastrophic Thinning of Dielectric Elastomers
,”
Phys. Rev. Lett.
,
118
(
7
), p.
078001
.
53.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2005
, “
Nonlinear Electroelasticity
,”
Acta Mech.
,
174
(
3–4
), pp.
167
183
.
54.
Patil
,
R. U.
,
Mishra
,
B. K.
, and
Singh
,
I. V.
,
2018
, “
A Local Moving Extended Phase Field Method (lmxpfm) for Failure Analysis of Brittle Materials
,”
Comput. Methods Appl. Mech. Eng.
,
342
, pp.
674
709
.
55.
Jog
,
C. S.
, and
Patil
,
K. D.
,
2016
, “
A Hybrid Finite Element Strategy for the Simulation of MEMS Structures
,”
Int. J. Numer. Methods Eng.
,
106
(
7
), pp.
527
555
.
56.
Kumar
,
M.
,
Singh
,
I. V.
,
Mishra
,
B. K.
,
Ahmad
,
S.
,
Rao
,
A. V.
, and
Kumar
,
V.
,
2018
, “
Mixed Mode Crack Growth in Elasto-Plastic-Creeping Solids Using XFEM
,”
Eng. Fract. Mech.
,
199
, pp.
489
517
.
57.
Zhao
,
X.
, and
Suo
,
Z.
,
2008
, “
Method to Analyze Programmable Deformation of Dielectric Elastomer Layers
,”
Appl. Phys. Lett.
,
93
(
25
), p.
251902
.
58.
Gent
,
A. N.
,
1996
, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
,
69
(
1
), pp.
59
61
.
59.
Godaba
,
H.
,
Zhang
,
Z.-Q.
,
Gupta
,
U.
,
Foo
,
C. C.
, and
Zhu
,
J.
,
2017
, “
Dynamic Pattern of Wrinkles in a Dielectric Elastomer
,”
Soft Matter
,
13
(
16
), pp.
2942
2951
.
60.
Kofod
,
G.
,
2008
, “
The Static Actuation of Dielectric Elastomer Actuators: How Does Pre-Stretch Improve Actuation?
,”
J. Phys. D Appl. Phys.
,
41
(
21
), p.
215405
.
61.
Malkus
,
D. S.
, and
Hughes
,
T. J.
,
1978
, “
Mixed Finite Element Methods—Reduced and Selective Integration Techniques: A Unification of Concepts
,”
Comput. Methods Appl. Mech. Eng.
,
15
(
1
), pp.
63
81
.
62.
Jiang
,
L.
,
Zhou
,
Y.
,
Chen
,
S.
,
Ma
,
J.
,
Betts
,
A.
, and
Jerrams
,
S.
,
2018
, “
Electromechanical Instability in Silicone- and Acrylate-Based Dielectric Elastomers
,”
J. Appl. Polym. Sci.
,
135
(
9
), p.
45733
.
63.
Yeoh
,
O. H.
, and
Fleming
,
P.
,
1997
, “
A New Attempt to Reconcile the Statistical and Phenomenological Theories of Rubber Elasticity
,”
J. Polym. Sci. Part B Polym. Phys.
,
35
(
12
), pp.
1919
1931
.
64.
Mihai
,
L. A.
, and
Goriely
,
A.
,
2017
, “
How to Characterize a Nonlinear Elastic Material? A Review on Nonlinear Constitutive Parameters in Isotropic Finite Elasticity
,”
Proc. R. Soc. A
,
473
(
2207
), p.
20170607
.
65.
Huang
,
J.
,
Shian
,
S.
,
Diebold
,
R. M.
,
Suo
,
Z.
, and
Clarke
,
D. R.
,
2012
, “
The Thickness and Stretch Dependence of the Electrical Breakdown Strength of an Acrylic Dielectric Elastomer
,”
Appl. Phys. Lett.
,
101
(
12
), p.
122905
.
66.
Doghri
,
I.
,
2000
,
Mechanics of Deformable Solids
,
Springer-Verlag
,
Berlin, Heidelberg
.
You do not currently have access to this content.