Abstract

In this work, we develop a thermo-viscoplasticity model for body-centered cubic (BCC) metals based on a two-temperature theory of nonequilibrium thermodynamics. Modeling the plastic deformation here involves two subsystems, viz., a configurational subsystem related to grain growth, dislocation motion, and a kinetic vibrational subsystem describing the vibration of atoms. Due to a separation of the time scales, the two subsystems are described by two different temperatures. In this study, we introduce a grain boundary density, in addition to the mobile and forest dislocation densities, as an internal variable. The focus in this paper is on how large plastic deformation is affected by the evolving grain boundaries. In order to check the predictive quality of the model, numerical simulations are conducted and validated against available experimental evidence wherever possible.

References

References
1.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, The Netherlands
,
Apr. 19
, pp.
541
547
.
2.
Follansbee
,
P. S.
, and
Kocks
,
U. F.
,
1988
, “
A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress As An Internal State Variable
,”
Acta Metall.
,
36
(
1
), pp.
81
93
. 10.1016/0001-6160(88)90030-2
3.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
. 10.1063/1.338024
4.
Langer
,
J. S.
,
Bouchbinder
,
E.
, and
Lookman
,
T.
,
2010
, “
Thermodynamic Theory of Dislocation-Mediated Plasticity
,”
Acta Mater.
,
58
(
10
), pp.
3718
3732
. 10.1016/j.actamat.2010.03.009
5.
Lieou
,
C. K. C.
, and
Bronkhorst
,
C. A.
,
2018
, “
Dynamic Recrystallization in Adiabatic Shear Banding: Effective-Temperature Model and Comparison to Experiments in Ultrafine-Grained Titanium
,”
Int. J. Plast.
,
111
, pp.
107
121
. 10.1016/j.ijplas.2018.07.011
6.
Chowdhury
,
S. R.
,
Kar
,
G.
,
Roy
,
D.
, and
Reddy
,
J. N.
,
2017
, “
Two-Temperature Thermodynamics for Metal Viscoplasticity: Continuum Modeling and Numerical Experiments
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011002
. 10.1115/1.4034726
7.
Chowdhury
,
S. R.
,
Roy
,
D.
,
Reddy
,
J. N.
, and
Srinivasa
,
A.
,
2016
, “
Fluctuation Relation Based Continuum Model for Thermoviscoplasticity in Metals
,”
J. Mech. Phys. Solids
,
96
, pp.
353
368
. 10.1016/j.jmps.2016.07.022
8.
Chowdhury
,
S. R.
,
Kar
,
G.
,
Roy
,
D.
, and
Reddy
,
J. N.
,
2018
, “
Metal Viscoplasticity With Two-Temperature Thermodynamics and Two Dislocation Densities
,”
Continuum Mech. Thermodyn.
,
30
(
2
), pp.
397
420
. 10.1007/s00161-017-0606-6
9.
Kar
,
G.
,
Roy Chowdhury
,
S.
, and
Roy
,
D.
,
2020
, “
A Nonequilibrium Thermodynamic Model for Viscoplasticity Coupled With Damage for BCC Metals
,”
Mech. Adv. Mater. Struc.
,
27
(
13
), pp.
1110
1119
. 10.1080/15376494.2020.1717692
10.
Das
,
S.
,
Chowdhury
,
S. R.
, and
Roy
,
D.
,
2018
, “
A Constitutive Model for Thermoplastics Based on Two Temperatures
,”
Eur. J. Mech. A. Solids
,
72
, pp.
440
451
. 10.1016/j.euromechsol.2018.06.010
11.
Chowdhury
,
S. R.
, and
Roy
,
D.
,
2019
, “
A Non-Equilibrium Thermodynamic Model for Viscoplasticity and Damage: Two Temperatures and a Generalized Fluctuation Relation
,”
Int. J. Plast.
,
113
, pp.
158
184
. 10.1016/j.ijplas.2018.09.014
12.
Terentyev
,
D.
,
Bakaev
,
A.
,
Serra
,
A.
,
Pavia
,
F.
,
Baker
,
K. L.
, and
Anento
,
N.
,
2018
, “
Grain Boundary Mediated Plasticity: The Role of Grain Boundary Atomic Structure and Thermal Activation
,”
Scr. Mater.
,
145
, pp.
1
4
. 10.1016/j.scriptamat.2017.10.002
13.
Shan
,
Z.
,
Stach
,
E.
,
Wiezorek
,
J.
,
Knapp
,
J.
,
Follstaedt
,
D.
, and
Mao
,
S.
,
2004
, “
Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel
,”
Science
,
305
(
5684
), pp.
654
657
. 10.1126/science.1098741
14.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
. 10.1007/BF01262690
15.
Longfei
,
L.
,
Wangyue
,
Y.
, and
Zuqing
,
S.
,
2006
, “
Dynamic Recrystallization of Ferrite in a Low-Carbon Steel
,”
Metall. Mater. Trans. A
,
37
(
3
), pp.
609
619
. 10.1007/s11661-006-0033-y
16.
Kooiker
,
H.
, and
Perdahcıoğlu
,
E.
,
2018
, “
A Continuum Model for the Effect of Dynamic Recrystallization on the Stress–Strain Response
,”
Materials
,
11
(
5
), p.
867
. 10.3390/ma11050867
17.
Faini
,
F.
,
Attanasio
,
A.
, and
Ceretti
,
E.
,
2018
, “
Experimental and Fe Analysis of Void Closure in Hot Rolling of Stainless Steel
,”
J. Mater. Process. Technol.
,
259
, pp.
235
242
. 10.1016/j.jmatprotec.2018.04.033
You do not currently have access to this content.