Abstract

Impact accidents cause great damage to lives and properties because the destructiveness, direction, and action mode of impact loadings can hardly be predicted. Ordinary thin-walled tube systems for energy absorption require outside constraints or inside fasteners to avoid tube splashing, which affects the modifiability of the systems and limits their application in emergencies. In an effort to break through this limitation, inspired by windmill, a novel omnidirectional self-locked energy absorption system has been proposed. The proposed system is made up of thin-walled tubes with windmill-liked cross section, which are specially designed to interlock with adjacent tubes and thus provide constraints among individual tubes to resist impact loadings in spatial arbitrary directions. The spatial omnidirectional self-locking capability of the windmill-inspired system is demonstrated under distributed and concentrated impact loadings. Moreover, the windmill-inspired system shows higher energy absorption efficiency than that of the widely used round tube system and previous self-locked system under loadings in various directions, and their energy absorption properties can be further improved by combining with the round tube system, adjusting the geometric parameter of each tube and designing the arrangement of tubes with different properties in the system. This work may shed light on the energy absorption system design and expand the application of self-locked energy absorption systems.

References

References
1.
Alghamdi
,
A.
,
2001
, “
Collapsible Impact Energy Absorbers: An Overview
,”
Thin-Walled Struct.
,
39
(
2
), pp.
189
213
. 10.1016/S0263-8231(00)00048-3
2.
Olabi
,
A.-G.
,
Morris
,
E.
, and
Hashmi
,
M.
,
2007
, “
Metallic Tube Type Energy Absorbers: A Synopsis
,”
Thin-Walled Struct.
,
45
(
7–8
), pp.
706
726
. 10.1016/j.tws.2007.05.003
3.
Lu
,
G.
, and
Yu
,
T.
,
2003
,
Energy Absorption of Structures and Materials
,
Woodhead Publishing Limited
,
Cambridge
,
385
400
.
4.
Abramowicz
,
W.
,
2003
, “
Thin-Walled Structures as Impact Energy Absorbers
,”
Thin-Walled Struct.
,
41
(
2–3
), pp.
91
107
. 10.1016/S0263-8231(02)00082-4
5.
Bornstein
,
H.
,
Placido
,
S. D.
,
Ryan
,
S.
,
Orifici
,
A. C.
, and
Mouritz
,
A. P.
,
2019
, “
Effect of Standoff on Near-Field Blast Mitigation Provided by Water-Filled Containers
,”
ASME J. Appl. Mech.
,
86
(
7
), pp.
1
36
. 10.1115/1.4043258
6.
Abramowicz
,
W.
, and
Jones
,
N.
,
1984
, “
Dynamic Axial Crushing of Circular Tubes
,”
Int. J. Impact Eng.
,
2
(
3
), pp.
263
281
. 10.1016/0734-743X(84)90010-1
7.
Zhang
,
X.
, and
Yu
,
T.
,
2009
, “
Energy Absorption of Pressurized Thin-Walled Circular Tubes Under Axial Crushing
,”
Int. J. Mech. Sci.
,
51
(
5
), pp.
335
349
. 10.1016/j.ijmecsci.2009.03.002
8.
Li
,
S.
,
Yu
,
B.
,
Karagiozova
,
D.
,
Liu
,
Z.
,
Lu
,
G.
, and
Wang
,
Z.
,
2019
, “
Experimental, Numerical, and Theoretical Studies of the Response of Short Cylindrical Stainless Steel Tubes Under Lateral Air Blast Loading
,”
Int. J. Impact Eng.
,
124
, pp.
48
60
. 10.1016/j.ijimpeng.2018.10.004
9.
Tran
,
T.
,
2017
, “
Crushing Analysis of Multi-Cell Thin-Walled Rectangular and Square Tubes Under Lateral Loading
,”
Compos. Struct.
,
160
, pp.
734
747
. 10.1016/j.compstruct.2016.10.106
10.
Eyvazian
,
A.
,
Habibi
,
M. K.
,
Hamouda
,
A. M.
, and
Hedayati
,
R.
,
2014
, “
Axial Crushing Behavior and Energy Absorption Efficiency of Corrugated Tubes
,”
Mater. Des.
,
54
, pp.
1028
1038
. 10.1016/j.matdes.2013.09.031
11.
Ma
,
J.
, and
You
,
Z.
,
2014
, “
Energy Absorption of Thin-Walled Square Tubes With a Prefolded Origami Pattern—Part I: Geometry and Numerical Simulation
,”
ASME J. Appl. Mech.
,
81
(
1
), p.
011003
. 10.1115/1.4024405
12.
Liu
,
R.
,
Wang
,
H.
,
Yang
,
J.
,
Liu
,
H.
, and
Sun
,
Y.
,
2015
, “
Theoretical Analysis on Quasi-Static Lateral Compression of Elliptical Tube Between Two Rigid Plates
,”
Appl. Math. Mech.
,
36
(
8
), pp.
1005
1016
. 10.1007/s10483-015-1962-7
13.
Wang
,
H.
,
Liu
,
R.
,
Yang
,
J.
,
Liu
,
H.
, and
Sun
,
Y.
,
2016
, “
Theoretical Model for Elliptical Tube Laterally Impacted by Two Parallel Rigid Plates
,”
Appl. Math. Mech.
,
37
(
2
), pp.
227
236
. 10.1007/s10483-016-2027-8
14.
Chen
,
Y.
,
Qiao
,
C.
,
Qiu
,
X.
,
Zhao
,
S.
,
Zhen
,
C.
, and
Liu
,
B.
,
2016
, “
A Novel Self-Locked Energy Absorbing System
,”
J. Mech. Phys. Solids
,
87
, pp.
130
149
. 10.1016/j.jmps.2015.11.008
15.
Yang
,
K.
,
Chen
,
Y.
,
Zhang
,
L.
,
Xiong
,
F.
,
Hu
,
X.
, and
Qiao
,
C.
,
2019
, “
Shape and Geometry Design for Self-Locked Energy Absorption Systems
,”
Int. J. Mech. Sci.
,
156
, pp.
312
328
. 10.1016/j.ijmecsci.2019.04.006
16.
Yang
,
K.
,
Qin
,
Q.
,
Zhai
,
Z.
,
Qiao
,
C.
,
Chen
,
Y.
, and
Yang
,
J.
,
2018
, “
Dynamic Response of Self-Locked Energy Absorption System Under Impact Loadings
,”
Int. J. Impact Eng.
,
122
, pp.
209
227
. 10.1016/j.ijimpeng.2018.08.011
17.
Zhao
,
Y.
,
Chen
,
L.
,
Du
,
B.
,
Liu
,
H.
,
Chen
,
B.
,
Peng
,
S.
,
Guo
,
Y.
,
Chen
,
L.
,
Li
,
W.
, and
Fang
,
D.
,
2019
, “
Bidirectional Self-Locked Energy Absorbing System: Design and Quasi-Static Compression Properties
,”
Thin-Walled Struct.
,
144
, p.
106366
. 10.1016/j.tws.2019.106366
18.
Reid
,
S.
, and
Reddy
,
T. Y.
,
1978
, “
Effect of Strain Hardening on the Lateral Compression of Tubes Between Rigid Plates
,”
Int. J. Solids Struct.
,
14
(
3
), pp.
213
225
. 10.1016/0020-7683(78)90026-4
19.
Baroutaji
,
A.
,
Gilchrist
,
M.
,
Smyth
,
D.
, and
Olabi
,
A.-G.
,
2015
, “
Crush Analysis and Multi-Objective Optimization Design for Circular Tube Under Quasi-Static Lateral Loading
,”
Thin-Walled Struct.
,
86
, pp.
121
131
. 10.1016/j.tws.2014.08.018
20.
Zhou
,
C.
,
Li
,
T.
,
Ming
,
S.
,
Song
,
Z.
, and
Wang
,
B.
,
2019
, “
Improving the Energy Absorption of Cruciform With Large Global Slenderness Ratio by Kirigami Approach and Welding Technology
,”
ASME J. Appl. Mech.
,
86
(
8
), p.
081004
. 10.1115/1.4043616
21.
Qi
,
D.
,
Lu
,
Q.
,
He
,
C.
,
Li
,
Y.
,
Wu
,
W.
, and
Xiao
,
D.
,
2019
, “
Impact Energy Absorption of Functionally Graded Chiral Honeycomb Structures
,”
Extreme Mech. Lett.
,
32
, p.
100568
. 10.1016/j.eml.2019.100568
You do not currently have access to this content.