Abstract

This paper studies a variable length elastica with a fixed point constraint by an assembly method that regards the whole elastica as an assembly of two components, i.e., pinned-clamped elasticas. The pinned-clamped elastica is obtained based on the post-buckled deformed shape with one internal inflection point. Thus, multiple coexisting solutions can be located accurately, which reveals three distinct equilibrium paths for the complete load–displacement curves. Under displacement control, two critical points on two equilibrium paths are found at saddle-node bifurcations. Interestingly, a new critical point is located at the boundary point of one equilibrium path, where the shapes of two pinned-clamped elasticas are two different post-buckled deformed shapes. Changing the location of the fixed point constraint allows the position of the boundary point to be easily manipulated, and the associated snap-through phenomenon can occur on different equilibrium paths. This flexible generation of the snap-through phenomenon is useful for designing engineering systems that require controllable snap-through.

References

References
1.
Holmes
,
D. P.
, and
Crosby
,
A. J.
,
2007
, “
Snapping Surfaces
,”
Adv. Mater.
,
19
(
21
), pp.
3589
3593
. 10.1002/adma.200700584
2.
Forterre
,
Y.
,
Skotheim
,
J. M.
,
Dumais
,
J.
, and
Mahadevan
,
L.
,
2005
, “
How the Venus Flytrap Snaps
,”
Nature
,
433
(
7024
), pp.
421
425
. 10.1038/nature03185
3.
Forterre
,
Y.
,
2013
, “
Slow, Fast and Furious: Understanding the Physics of Plant Movements
,”
J. Exp. Bot.
,
64
(
15
), pp.
4745
4760
. 10.1093/jxb/ert230
4.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
. 10.1088/0964-1726/22/2/023001
5.
Bowen
,
C. R.
,
Kim
,
H. A.
,
Weaver
,
P. M.
, and
Dunn
,
S.
,
2014
, “
Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications
,”
Energy Environ. Sci.
,
7
(
1
), pp.
25
44
. 10.1039/C3EE42454E
6.
Scarselli
,
G.
,
Nicassio
,
F.
,
Pinto
,
F.
,
Ciampa
,
F.
,
Iervolino
,
O.
, and
Meo
,
M.
,
2016
, “
A Novel Bistable Energy Harvesting Concept
,”
Smart Mater. Struct.
,
25
(
5
), p.
055001
. 10.1088/0964-1726/25/5/055001
7.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
. 10.1002/adma.201501708
8.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2017
, “
Passive Control of Viscous Flow via Elastic Snap-Through
,”
Phys. Rev. Lett.
,
119
(
14
), p.
144502
. 10.1103/PhysRevLett.119.144502
9.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
A Bifurcation-Based Coupled Linear-Bistable System for Microscale Mass Sensing
,”
J. Sound Vib.
,
333
(
8
), pp.
2241
2252
. 10.1016/j.jsv.2013.12.017
10.
Kochmann
,
D. M.
, and
Bertoldi
,
K.
,
2017
, “
Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions
,”
ASME Appl. Mech. Rev.
,
69
(
5
), p.
050801
. 10.1115/1.4037966
11.
Chen
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2017
, “
Integrated Design and Simulation of Tunable, Multi-State Structures Fabricated Monolithically With Multi-Material 3d Printing
,”
Sci. Rep.
,
7
(
1
), pp.
45671
. 10.1038/srep45671
12.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
. 10.1002/adma.201601650
13.
Hu
,
N.
, and
Burgueno
,
R.
,
2015
, “
Buckling-Induced Smart Applications: Recent Advances and Trends
,”
Smart Mater. Struct.
,
24
(
6
), p.
063001
. 10.1088/0964-1726/24/6/063001
14.
Harvey
,
P. S.
, and
Virgin
,
L. N.
,
2015
, “
Coexisting Equilibria and Stability of a Shallow Arch: Unilateral Displacement-Control Experiments and Theory
,”
Int. J. Solids Struct.
,
54
, pp.
1
11
. 10.1016/j.ijsolstr.2014.11.016
15.
Lu
,
N. Y.
, and
Lu
,
C. J.
,
2014
, “
Deformation and Stability of a Pinned Shallow Arch Constrained by a Rigid Plate and Loaded by a Concentrated Moment
,”
Int. J. Non-Linear Mech.
,
64
, pp.
39
45
. 10.1016/j.ijnonlinmec.2014.04.002
16.
Zhang
,
X. W.
, and
Yang
,
J. L.
,
2005
, “
Inverse Problem of Elastica of a Variable-Arc-Length Beam Subjected to a Concentrated Load
,”
Acta Mech. Sin.
,
21
(
5
), pp.
444
450
. 10.1007/s10409-005-0062-6
17.
Wang
,
C. M.
,
Lam
,
K. Y.
,
He
,
X. Q.
, and
Chucheepsakul
,
S.
,
1997
, “
Large Deflections of an End Supported Beam Subjected to a Point Load
,”
Int. J. Non-Linear Mech.
,
32
(
1
), pp.
63
72
. 10.1016/S0020-7462(96)00017-0
18.
Wang
,
C. M.
,
Lam
,
K. Y.
, and
He
,
X. Q.
,
1998
, “
Instability of Variable Arc-Length Elastica Under Follower Force
,”
Mech. Res. Commun.
,
25
(
2
), pp.
189
194
. 10.1016/S0093-6413(98)00024-X
19.
Pulngern
,
T.
,
Sudsanguan
,
T.
,
Athisakul
,
C.
, and
Chucheepsakur
,
S.
,
2013
, “
Elastica of a Variable-Arc-Length Circular Curved Beam Subjected to an End Follower Force
,”
Int. J. Non-Linear Mech.
,
49
, pp.
129
136
. 10.1016/j.ijnonlinmec.2012.10.002
20.
Chuchkeepsakul
,
S.
,
Bucharoen
,
S.
, and
Huang
,
T.
,
1995
, “
Elastica of Simple Variable-Arc-Length Beam Subjected to End Moment
,”
ASCE J. Eng. Mech.
,
121
(
7
), pp.
767
772
. 10.1061/(ASCE)0733-9399(1995)121:7(767)
21.
Chucheepsakul
,
S.
,
Buncharoen
,
S.
, and
Wang
,
C. M.
,
1994
, “
Large Deflection of Beams Under Moment Gradient
,”
ASCE J. Eng. Mech.
,
120
(
9
), pp.
1848
1860
. 10.1061/(ASCE)0733-9399(1994)120:9(1848)
22.
Plaut
,
R. H.
,
2015
, “
Snap-Through of Arches and Buckled Beams Under Unilateral Displacement Control
,”
Int. J. Solids Struct.
,
63
, pp.
109
113
. 10.1016/j.ijsolstr.2015.02.044
23.
Plaut
,
R. H.
, and
Virgin
,
L. N.
,
2009
, “
Vibration and Snap-Through of Bent Elastica Strips Subjected to End Rotations
,”
ASME J. Appl. Mech.
,
76
(
4
), p.
041011
. 10.1115/1.3086783
24.
Chen
,
J. S.
, and
Hung
,
S. Y.
,
2011
, “
Snapping of an Elastica Under Various Loading Mechanisms
,”
Eur. J. Mech. A
,
30
(
4
), pp.
525
531
. 10.1016/j.euromechsol.2011.03.006
25.
Chen
,
J. S.
, and
Ro
,
W. C.
,
2010
, “
Deformations and Stability of an Elastica Subjected to an Off-Axis Point Constraint
,”
ASME J. Appl. Mech.
,
77
(
3
), p.
031006
. 10.1115/1.4000426
26.
Liakou
,
A.
, and
Detournay
,
E.
,
2018
, “
Constrained Buckling of Variable Length Elastica: Solution by Geometrical Segmentation
,”
Int. J. Non-Linear Mech.
,
99
, pp.
204
217
. 10.1016/j.ijnonlinmec.2017.12.001
27.
Domokos
,
G.
,
Holmes
,
P.
, and
Royce
,
B.
,
1997
, “
Constrained Euler Buckling
,”
J. Nonlinear Sci.
,
7
(
3
), pp.
281
314
. 10.1007/BF02678090
28.
Hartono
,
W.
,
1997
, “
Discussion: Elastica of Simple Variable-Arc-Length Beam Subjected to End Moment
,”
ASCE J. Eng. Mech.
,
123
(
1
), pp.
92
95
. 10.1061/(ASCE)0733-9399(1997)123:1(92)
29.
Bosi
,
F.
,
Misseroni
,
D.
,
Dal Corso
,
F.
, and
Bigoni
,
D.
,
2015
, “
Development of Configurational Forces During the Injection of an Elastic Rod
,”
Extreme Mech. Lett.
,
4
, pp.
83
88
. 10.1016/j.eml.2015.04.007
30.
O’Reilly
,
O. M.
,
2017
,
Modeling Nonlinear Problems in the Mechanics of Strings and Rods
,
Springer
,
New York
.
31.
Wang
,
Q.
,
Zou
,
H. L.
, and
Deng
,
Z. C.
,
2020
, “
Snap-Through of an Elastica Under Bilateral Displacement Control at a Material Point
,”
Acta Mech. Sin.
. (online) 10.1007/s10409-020-00937-4
32.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2016
, “
Critical Slowing Down in Purely Elastic ‘Snap-Through’ Instabilities
,”
Nat. Phys.
,
13
(
2
), pp.
142
145
. 10.1038/nphys3915
33.
Maddocks
,
J. H.
,
1987
, “
Stability and Folds
,”
Arch. Ration. Mech. Anal.
,
99
(
4
), pp.
301
328
. 10.1007/BF00282049
You do not currently have access to this content.