Abstract

In the present article, an integrated paradigm for topology optimization on complex surfaces with arbitrary genus is proposed. The approach is constructed based on the two-dimensional (2D) Moving Morphable Component (MMC) framework, where a set of structural components are used as the basic units of optimization, and computational conformal mapping (CCM) technique, with which a complex surface represented by an unstructured triangular mesh can be mapped into a set of regular 2D parameter domains numerically. A multipatch stitching scheme is also developed to achieve an MMC-friendly global parameterization through a number of local parameterizations. Numerical examples including a saddle-shaped shell, a torus-shape shell, and a tee-branch pipe are solved to demonstrate the validity and efficiency of the proposed approach. It is found that compared with traditional approaches for topology optimization on 2D surfaces, optimized designs with clear load transmission paths can be obtained with much fewer numbers of design variables and degrees-of-freedom for finite element analysis (FEA) via the proposed approach.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
3.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
,
4
(
3–4
), pp.
250
252
.
4.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
5.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
6.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A. M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
7.
Ventsel
,
E.
,
Krauthammer
,
T.
, and
Carrera
,
E.
,
2002
, “
Thin Plates and Shells: Theory, Analysis, and Applications
,”
ASME Appl. Mech. Rev.
,
55
(
4
), pp.
B72
B73
.
8.
Luo
,
J. H.
, and
Gea
,
H. C.
,
1998
, “
Optimal Bead Orientation of 3D Shell/Plate Structures
,”
Finite Elem. Anal. Des.
,
31
(
1
), pp.
55
71
.
9.
Deng
,
Y. B.
,
Liu
,
Z. Y.
, and
Korvink
,
J. G.
,
2020
, “
Topology Optimization on Two-Dimensional Manifolds
,”
Comput. Methods Appl. Mech. Eng.
,
364
, p.
112937
.
10.
Träff
,
E. A.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2021
, “
Topology Optimization of Ultra High Resolution Shell Structures
,”
Thin Wall. Struct.
,
160
, p.
107349
.
11.
Feng
,
S. Q.
,
Zhang
,
W. H.
,
Meng
,
L.
,
Xu
,
Z.
, and
Chen
,
L.
,
2021
, “
Stiffener Layout Optimization of Shell Structures With B-Spline Parameterization Method
,”
Struct. Multidiscip. Optim.
,
63
(
6
), pp.
1
15
.
12.
Wang
,
B.
,
Yang
,
M. S.
,
Zhang
,
D. Y.
,
Liu
,
D. C.
,
Feng
,
S. J.
, and
Hao
,
P.
,
2022
, “
Alternative Approach for Imperfection-Tolerant Design Optimization of Stiffened Cylindrical Shells via Energy Barrier Method
,”
Thin Wall. Struct.
,
172
, p.
108838
.
13.
Townsend
,
S.
, and
Kim
,
H. A.
,
2019
, “
A Level Set Topology Optimization Method for the Buckling of Shell Structures
,”
Struct. Multidiscip. Optim.
,
60
(
5
), pp.
1783
1800
.
14.
Yan
,
K.
,
Cheng
,
G. D.
, and
Wang
,
B. P.
,
2018
, “
Topology Optimization of Damping Layers in Shell Structures Subject to Impact Loads for Minimum Residual Vibration
,”
J. Sound Vib.
,
431
, pp.
226
247
.
15.
Ye
,
Q.
,
Guo
,
Y.
,
Chen
,
S. K.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Topology Optimization of Conformal Structures on Manifolds Using Extended Level Set Methods (X-LSM) and Conformal Geometry Theory
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
164
185
.
16.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
.
17.
Norato
,
J. A.
,
Bell
,
B. K.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization With Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
.
18.
Zhou
,
Y.
,
Zhang
,
W. H.
,
Zhu
,
J. H.
, and
Xu
,
Z.
,
2016
, “
Feature-Driven Topology Optimization Method With Signed Distance Function
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
1
32
.
19.
Guo
,
X.
,
Zhou
,
J. H.
,
Zhang
,
W. S.
,
Du
,
Z. L.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
.
20.
Zhu
,
B. L.
,
Chen
,
Q.
,
Wang
,
R. X.
, and
Zhang
,
X. M.
,
2018
, “
Structural Topology Optimization Using a Moving Morphable Component-Based Method Considering Geometrical Nonlinearity
,”
ASME J. Mech. Des.
,
140
(
8
), p.
081403
.
21.
Sun
,
J.
,
Tian
,
Q.
,
Hu
,
H.
, and
Pedersen
,
N. L.
,
2019
, “
Topology Optimization for Eigenfrequencies of a Rotating Thin Plate via Moving Morphable Components
,”
J. Sound Vib.
,
448
, pp.
83
107
.
22.
Yu
,
M.
,
Ruan
,
S.
,
Wang
,
X.
,
Li
,
Z.
, and
Shen
,
C.
,
2019
, “
Topology Optimization of Thermal–Fluid Problem Using the MMC-Based Approach
,”
Struct. Multidiscip. Optim.
,
60
(
1
), pp.
151
165
.
23.
Luo
,
J.
,
Du
,
Z.
,
Guo
,
Y.
,
Liu
,
C.
,
Zhang
,
W.
, and
Guo
,
X.
,
2021
, “
Multi-Class, Multi-Functional Design of Photonic Topological Insulators by Rational Symmetry-Indicators Engineering
,”
Nanophotonics
,
10
(
18
), pp.
4523
4531
.
24.
Liu
,
C.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081008
.
25.
Gu
,
X.
,
Wang
,
Y.
,
Chan
,
T. F.
,
Thompson
,
P. M.
, and
Yau
,
S. T.
,
2004
, “
Genus Zero Surface Conformal Mapping and Its Application to Brain Surface Mapping
,”
IEEE/Trans. Med. Imag.
,
23
(
8
), pp.
949
958
.
26.
Choi
,
G. P. T.
,
Chen
,
Y.
,
Lui
,
L. M.
, and
Chiu
,
B.
,
2017
, “
Conformal Mapping of Carotid Vessel Wall and Plaque Thickness Measured From 3D Ultrasound Images
,”
Med. Biol. Eng. Comput.
,
55
(
12
), pp.
2183
2195
.
27.
Gu
,
X. D.
,
2008
,
Computational Conformal Geometry
, Vol. 1,
S.-T.
Yau
, ed.,
International Press
,
Somerville, MA
.
28.
Li
,
X.
,
Bao
,
Y.
,
Guo
,
X.
,
Jin
,
M.
,
Gu
,
X.
, and
Qin
,
H.
,
2008
, “
Globally Optimal Surface Mapping for Surfaces With Arbitrary Topology
,”
IEEE T. Vis. Comput. Gr.
,
14
(
4
), pp.
805
819
.
29.
Lévy
,
B.
,
Petitjean
,
S.
,
Ray
,
N.
, and
Maillot
,
J.
,
2002
, “
Least Squares Conformal Maps for Automatic Texture Atlas Generation
,”
ACM Trans. Graph.
,
21
(
3
), pp.
362
371
.
30.
Kharevych
,
L.
,
Springborn
,
B.
, and
Schröder
,
P.
,
2006
, “
Discrete Conformal Mappings via Circle Patterns
,”
ACM Trans. Graph.
,
25
(
2
), pp.
412
438
.
31.
Gu
,
X. D.
,
Zeng
,
W.
,
Luo
,
F.
, and
Yau
,
S. T.
,
2012
, “
Numerical Computation of Surface Conformal Mappings
,”
Comput. Meth. Funct. Th.
,
11
(
2
), pp.
747
787
.
32.
Choi
,
P. T.
, and
Lui
,
L. M.
,
2015
, “
Fast Disk Conformal Parameterization of Simply-Connected Open Surfaces
,”
J. Sci. Comput.
,
65
(
3
), pp.
1065
1090
.
33.
Lui
,
L. M.
,
Lam
,
K. C.
,
Wong
,
T. W.
, and
Gu
,
X.
,
2013
, “
Texture Map and Video Compression Using Beltrami Representation
,”
SIAM J. Imaging Sci.
,
6
(
4
), pp.
1880
1902
.
34.
Lui
,
L. M.
,
Lam
,
K. C.
,
Yau
,
S. T.
, and
Gu
,
X.
,
2014
, “
Teichmüller Mapping (T-Map) and Its Applications to Landmark Matching Registration
,”
SIAM J. Imaging Sci.
,
7
(
1
), pp.
391
426
.
35.
Meng
,
T. W.
,
Choi
,
G. P. T.
, and
Lui
,
L. M.
,
2016
, “
TEMPO: Feature-Endowed Teichmüller Extremal Mappings of Point Clouds
,”
SIAM J. Imaging Sci.
,
9
(
4
), pp.
1922
1962
.
36.
Pinkall
,
U.
, and
Polthier
,
K.
,
1993
, “
Computing Discrete Minimal Surfaces and Their Conjugates
,”
Exp. Math.
,
2
(
1
), pp.
15
36
.
37.
Sander
,
P. v.
,
Wood
,
Z. J.
,
Gortler
,
S. J.
,
Snyder
,
J.
, and
Hoppe
,
H.
,
2003
, “Multi-Chart Geometry Images,”
In Proceedings of the Eurographics Symposium on Geometry Processing
,
Eurographics Association
,
Goslar, Germany
, pp.
146
155
.
38.
Choi
,
G. P. T.
,
Leung-Liu
,
Y.
,
Gu
,
X.
, and
Ming Lui
,
L.
,
2020
, “
Parallelizable Global Conformal Parameterization of Simply-Connected Surfaces via Partial Welding
,”
SIAM J. Imaging Sci.
,
13
(
3
), pp.
1049
1083
.
39.
Xu
,
J.
,
Chen
,
F.
, and
Deng
,
J.
,
2015
, “
Two-Dimensional Domain Decomposition Based on Skeleton Computation for Parameterization and Isogeometric Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
541
555
.
40.
Kargaran
,
S.
,
Jüttler
,
B.
,
Kleiss
,
S. K.
,
Mantzaflaris
,
A.
, and
Takacs
,
T.
,
2019
, “
Overlapping Multi-Patch Structures in Isogeometric Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
356
, pp.
325
353
.
41.
Chapelle
,
D.
, and
Bathe
,
K. J.
,
2010
,
The Finite Element Analysis of Shells-Fundamentals
,
Springer-Verlag
,
Berlin
.
42.
Simulia
,
D. S.
,
2010
,
Abaqus Analysis User's Manual
,
Dassault Systemes
,
Pawtucket, RI
.
43.
Zhang
,
W. S.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
44.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
45.
Isenburg
,
M.
, and
Lindstrom
,
P.
,
2005
, “Streaming Meshes,”
VIS 05. IEEE Visualization
,
IEEE
,
Minneapolis, MN
, pp.
231
238
.
46.
Vegter
,
G.
, and
Yap
,
C. K.
,
1990
, “Computational Complexity of Combinatorial Surfaces,”
In Proceedings of the Sixth Annual Symposium on Computational Geometry (SCG '90)
,
Association for Computing Machinery
,
New York
, pp.
102
111
.
47.
Dey
,
T. K.
,
Li
,
K.
,
Sun
,
J.
, and
Cohen-Steinen
,
D.
,
2008
, “Computing Geometry-Aware Handle and Tunnel Loops in 3D Models,”
In ACM SIGGRAPH 2008 papers (SIGGRAPH '08)
,
Association for Computing Machinery
,
New York, NY
, pp.
1
9
.
48.
Liu
,
C.
,
Zhu
,
Y. C.
,
Sun
,
Z.
,
Li
,
D. D.
,
Du
,
Z. L.
,
Zhang
,
W. S.
, and
Guo
,
X.
,
2018
, “
An Efficient Moving Morphable Component (MMC)-Based Approach for Multi-Resolution Topology Optimization
,”
Struct. Multidiscip. Optim.
,
58
(
6
), pp.
2455
2479
.
49.
Persson
,
P. O.
, and
Strang
,
G.
,
2004
, “
A Simple Mesh Generator in MATLAB
,”
SIAM Rev.
,
46
(
2
), pp.
329
345
.
50.
Shewchuk
,
J. R.
,
1996
, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator,”
Workshop on Applied Computational Geometry
,
Springer
,
Berlin/Heidelberg
, pp.
203
222
.
51.
Zhang
,
W. S.
,
Li
,
D. D.
,
Zhou
,
J. H.
,
Du
,
Z. L.
,
Li
,
B. J.
, and
Guo
,
X.
,
2018
, “
A Moving Morphable Void (MMV)-Based Explicit Approach for Topology Optimization Considering Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
334
, pp.
381
413
.
52.
Zhang
,
W. S.
,
Chen
,
J. S.
,
Zhu
,
X. F.
,
Zhou
,
J. H.
,
Xue
,
D. C.
,
Lei
,
X.
, and
Guo
,
X.
,
2017
, “
Explicit Three Dimensional Topology Optimization via Moving Morphable Void (MMV) Approach
,”
Comput. Methods Appl. Mech. Eng.
,
322
, pp.
590
614
.
53.
Zhu
,
Y. C.
,
Li
,
S. S.
,
Du
,
Z. L.
,
Liu
,
C.
,
Guo
,
X.
, and
Zhang
,
W. S.
,
2019
, “
A Novel Asymptotic-Analysis-Based Homogenisation Approach Towards Fast Design of Infill Graded Microstructures
,”
J. Mech. Phys. Solids
,
124
, pp.
612
633
.
54.
Li
,
L. Y.
,
Liu
,
C.
,
Zhang
,
W. S.
,
Du
,
Z. L.
, and
Guo
,
X.
,
2021
, “
Combined Model-Based Topology Optimization of Stiffened Plate Structures via MMC Approach
,”
Int. J. Mech. Sci.
,
208
, p.
106682
.
You do not currently have access to this content.