Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Consider a linear elastic infinite disk, a sector of which, of arbitrary opening angle 2β, is subjected to a uniform temperature increase ΔT with respect to the complementary portion. An analytical solution is sought, imagining that the disk is first cut along the interface with the heated sector, now free to expand; then the two parts are re-joined and the thermal mismatch is annihilated by arrays of glide dislocations, distributed along the interfaces. A sequence of approximate solutions is found as the length of the arrays of reconciling dislocations is increased, characterized by a logarithmic stress singularity at the sector tip. However, modulo the particular case 2β=π, the stress grows unboundedly when the length of the dislocation arrays tends to infinity. This is in agreement with the predictions from dimensional analysis, because for the infinite disk problem there is no internal length scale. If the disk is finite in size, its radius R represents an additional length scale enriching the class of solutions, but the analytical treatment results much more complicated. Therefore, we propose to correlate the solution of this problem with that of an infinite disk for which the length of the arrays of reconciling dislocations is finite and depends upon R. An excellent agreement with numerical experiments in abaqus is thus found. An approach of this type can be useful in many engineering problems for which the limit condition of infinite body, though leading to analytic simplifications, could imply spurious results.

References

1.
Gatewood
,
B. E.
,
1957
, “Thermal Stresses,”
McGraw-Hill
,
New York
.
2.
Duhamel
,
J.
,
1837
, “
Second Memoire Sur Les Phenomenes Thermo-Mecaniques
,”
J. de l’Ecole Polytechn.
,
15
(
25
), pp.
1
57
.
3.
Evangelisti
,
L.
,
Guattari
,
C.
,
Asdrubali
,
F.
, and
de Lieto Vollaro
,
R.
,
2020
, “
An Experimental Investigation of the Thermal Performance of a Building Solar Shading Device
,”
J. Build. Eng.
,
28
, p.
101089
.
4.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2023
, “
Thermal Analysis of Architectural Glazing in Uneven Conditions Based on Biot’s Variational Principle: Part I–Description of the Finite Element Modelling
,”
Glass Struct. Eng.
,
8
(
1
), pp.
41
56
.
5.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2023
, “
Thermal Analysis of Architectural Glazing in Uneven Conditions Based on Biot’s Variational Principle: Part II–Validation and Case-Studies
,”
Glass Struct. Eng.
,
8
(
1
), pp.
57
80
.
6.
2006. NF DTU 39 P3 Travaux de bâtiment – Travaux de vitrerie-miroiterie – Partie 3: Mémento calculs des contraintes thermiques. Standard, CSTB.
7.
Galuppi
,
L.
,
Maffeis
,
M.
, and
Royer-Carfagni
,
G.
,
2021
, “
Enhanced Engineered Calculation of the Temperature Distribution in Architectural Glazing Exposed to Solar Radiation
,”
Glass Struct. Eng.
,
6
(
4
), pp.
425
448
.
8.
Hwu
,
C.
,
1990
, “
Thermal Stresses in an Anisotropic Plate Disturbed by an Insulated Elliptic Hole or Crack
,”
ASME J. Appl. Mech.
,
57
(
4
), pp.
916
922
.
9.
Galuppi
,
L.
, and
Royer-Carfagni
,
G.
,
2023
, “
Thermal and Elastic Modeling of Architectural Glass Unevenly Heated by the Environment. Formal Symmetry From Biot’s Variational Principle
,”
Int. J. Solids Struct.
,
277–278
(
18
), p.
112329
.
10.
Horvay
,
G.
, and
Hanson
,
K.
,
1954
, “
The Sector Problem
,”
ASME J. Appl. Mech.
,
24
(
4
), pp.
574
581
.
11.
Kuo
,
M. C.
, and
Bogy
,
D. B.
,
1974
, “
Plane Solutions for the Displacement and Traction-Displacement Problems for Anisotropic Elastic Wedges
,”
ASME J. Appl. Mech.
,
41
(
1
), pp.
197
202
.
12.
Bogy
,
D. B.
,
1971
, “
Two Edge-Bondend Elastic Wedges of Different Materials and Wedge Angles Under Surface Tractions
,”
ASME J. Appl. Mech.
,
38
(
2
), pp.
377
386
.
13.
Selvarathinam
,
A.
, and
Pageau
,
S.
,
1997
, “
The Order of Stress Singularities in Orthotropic Wedges
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
717
719
.
14.
Li
,
Z. L.
, and
Wang
,
C.
,
2010
, “
Particular Solutions of a Two-Dimensional Infinite Wedge for Various Boundary Conditions With Weak Singularity
,”
ASME J. Appl. Mech.
,
77
(
1
), p.
022005
.
15.
Zwiers
,
R. I.
,
Ting
,
T. C. T.
, and
Spilker
,
R. L.
,
1982
, “
On the Logarithmic Singularity of Free-Edge Stress in Laminated Composites Under Uniform Extension
,”
ASME J. Appl. Mech.
,
49
(
3
), pp.
561
569
.
16.
Chen
,
D.
, and
Nisitani
,
H.
,
1993
, “
Singular Stress Field Near the Corner of Jointed Dissimilar Materials
,”
ASME J. Appl. Mech.
,
60
(
3
), pp.
607
613
.
17.
Lin
,
Y. Y.
, and
Sung
,
J. C.
,
1998
, “
Stress Singularties at the Apex of a Dissimilar Anisotropic Wedge
,”
ASME J. Appl. Mech.
,
65
(
2
), pp.
454
463
.
18.
Williams
,
M. L.
,
1952
, “
Stress Singularties Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
526
528
.
19.
Hills
,
D. A.
,
Kelly
,
P. A.
,
Dai
,
D. N.
, and
Korsunsky
,
A.
,
1996
,
Solution of Crack Problems. The Distributed Dislocation Technique
,
Springer Science & Business Media, B.V
,
New York
.
20.
Barenblatt
,
G. I.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
, Vol.
14
,
Cambridge University Press
,
Cambridge, UK
.
21.
Royer-Carfagni
,
G.
, and
Zandekarimi
,
S.
,
2023
, “
The Linear Elastic Wedge Under a Tip Couple at the Critical Angle. Where is the Paradox?
,”
J. Elast.
,
154
(
1–4
), pp.
275
291
.
22.
Fosdick
,
R.
, and
Royer-Carfagni
,
G.
,
2020
, “
Hadamard’s Conditions of Compatibility From Cesaro’s Line-Integral Representation
,”
Int. J. Eng. Sci.
,
146
, p.
103174
.
23.
Fosdick
,
R.
, and
Royer-Carfagni
,
G.
,
2020
, “
Erratum to: Hadamard’s Conditions of Compatibility From Cesaro’s Line-Integral Representation
,”
Int. J. Eng. Sci.
,
154
, p.
103174
.
24.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. Lond. A
,
241
(
1226
), pp.
376
396
.
25.
Mann
,
E.
,
1949
, “
An Elastic Theory of Dislocations
,”
Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.
,
199
(
1058
), pp.
376
394
.
26.
Barber
,
J. R.
,
2002
,
Elasticity
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
27.
Koehler
,
J.
,
1966
, “
Elastic Centers of Strain and Dislocations
,”
J. Appl. Phys.
,
37
(
12
), pp.
4351
4357
.
28.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
29.
Eshelby
,
J.
,
1951
, “
The Force on an Elastic Singularity
,”
Phil. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
244
(
877
), pp.
87
112
.
30.
Dundurs
,
J.
,
1969
, “Elastic Interaction of Dislocations With Inhomogeneities,”
Mathematical Theory of Dislocations
,
T.
Mura
, ed.,
American Society of Mechanical Engineers
,
New York
, pp.
70
115
.
You do not currently have access to this content.