Abstract

Nondestructive evaluation (NDE) techniques that use nonlinear wave–damage interactions have gained significant attention recently due to their improved sensitivity in detecting incipient damage. This study presents the use of finite element (FE) simulation with the experimental investigation to quantify the effects of guided waves’ propagation through multiple delaminations in unidirectional glass fiber-reinforced polymer (GFRP) composites. Further, it utilizes the outcomes of nonlinear interactions between guided waves and delaminations to locate the latter. This is achieved through probabilistic Bayesian updating with a structural reliability approach. Guided waves interacting with delaminations induce nonlinear acoustic signatures that can be quantified by the nonlinearity index (NLI). The study found that the NLI changes with the interrogation frequency, as confirmed by numerical and experimental observations. By using the numerical outcomes obtained from the nonlinear responses, a Bayesian model-based approach with subset simulation is proposed and subsequently used to locate multiple delaminations. The results indicate that both the log-likelihood and log-evidence are key factors in determining the localization phenomenon. The proposed method successfully localizes multiple delaminations and evaluates their number, interlaminar position, width, and type.

References

1.
Quaresimin
,
M.
, and
Varley
,
R. J.
,
2008
, “
Understanding the Effect of Nano-Modifier Addition Upon the Properties of Fibre Reinforced Laminates
,”
Compos. Sci. Technol.
,
68
(
3–4
), pp.
718
726
.
2.
Forte
,
C. T.
,
Montgomery
,
S. M.
,
Yue
,
L.
,
Hamel
,
C. M.
, and
Qi
,
H. J.
,
2023
, “
Grayscale Digital Light Processing Gradient Printing for Stress Concentration Reduction and Material Toughness Enhancement
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071003
.
3.
Masuelli
,
M. A.
,
2013
, “Introduction of Fibre-Reinforced Polymers—Polymers and Composites: Concepts, Properties and Processes,”
Fiber Reinforced Polymers—The Technology Applied for Concrete Repair
,
M. A.
Masuelli
, ed.,
IntechOpen
,
London, UK
, pp.
3
40
.
4.
Wu
,
D.
, and
Law
,
S.
,
2007
, “
Delamination Detection-Oriented Finite Element Model for a Fiber Reinforced Polymer Bonded Concrete Plate and Its Application With Vibration Measurements
,”
ASME J. Appl. Mech.
,
74
(
2
), pp.
240
248
.
5.
Khurana
,
A.
,
Kumar
,
D.
,
Sharma
,
A. K.
, and
Joglekar
,
M. M.
,
2021
, “
Nonlinear Oscillations of Particle-Reinforced Electro-Magneto-Viscoelastomer Actuators
,”
ASME J. Appl. Mech.
,
88
(
12
), p.
121002
.
6.
Spronk
,
S.
,
Kersemans
,
M.
,
De Baerdemaeker
,
J.
,
Gilabert
,
F.
,
Sevenois
,
R.
,
Garoz
,
D.
,
Kassapoglou
,
C.
, and
Van Paepegem
,
W.
,
2018
, “
Comparing Damage From Low-Velocity Impact and Quasi-Static Indentation in Automotive Carbon/Epoxy and Glass/Polyamide-6 Laminates
,”
Polym. Test.
,
65
, pp.
231
241
.
7.
Tay
,
T.
,
2003
, “
Characterization and Analysis of Delamination Fracture in Composites: An Overview of Developments From 1990 to 2001
,”
ASME Appl. Mech. Rev.
,
56
(
1
), pp.
1
32
.
8.
Cen
,
J.
, and
Komvopoulos
,
K.
,
2023
, “
A Cohesive-Zone-Based Contact Mechanics Analysis of Delamination in Homogeneous and Layered Half-Spaces Subjected to Normal and Shear Surface Tractions
,”
ASME J. Appl. Mech.
,
90
(
7
), p.
071011
.
9.
Zhang
,
B.
,
Hallett
,
S. R.
, and
Allegri
,
G.
,
2022
, “
Sensing Delamination in Composites Reinforced by Ferromagnetic Z-Pins Via Electromagnetic Induction
,”
Compos. Sci. Technol.
,
217
, p.
109113
.
10.
Zhang
,
Z.
,
Shankar
,
K.
,
Morozov
,
E. V.
, and
Tahtali
,
M.
,
2016
, “
Vibration-Based Delamination Detection in Composite Beams Through Frequency Changes
,”
J. Vib. Control
,
22
(
2
), pp.
496
512
.
11.
Sundararaman
,
S.
, and
Adams
,
D. E.
,
2009
, “
Accuracy and Convergence Using a Local Interaction Simulation Approach in One, Two, and Three Dimensions
,”
ASME J. Appl. Mech.
,
76
(
3
), p.
031008
.
12.
Destrade
,
M.
,
2004
, “
Rayleigh Waves in Anisotropic Crystals Rotating About the Normal to a Symmetry Plane
,”
ASME J. Appl. Mech.
,
71
(
4
), pp.
516
520
.
13.
Mori
,
N.
,
Biwa
,
S.
, and
Kusaka
,
T.
,
2019
, “
Harmonic Generation at a Nonlinear Imperfect Joint of Plates by the S0 Lamb Wave Incidence
,”
ASME J. Appl. Mech.
,
86
(
12
), p.
121003
.
14.
Sohn
,
H.
,
Dutta
,
D.
,
Yang
,
J.-Y.
,
Park
,
H.-J.
,
DeSimio
,
M.
,
Olson
,
S.
, and
Swenson
,
E.
,
2011
, “
Delamination Detection in Composites Through Guided Wave Field Image Processing
,”
Compos. Sci. Technol.
,
71
(
9
), pp.
1250
1256
.
15.
Su
,
Y.
,
Yang
,
J.
,
Liao
,
Y.
,
Zhou
,
P.
,
Xu
,
L.
,
Zhou
,
L.-m.
, and
Su
,
Z.
,
2021
, “
An Implantable, Compatible and Networkable Nanocomposite Piezoresistive Sensor for In Situ Acquisition of Dynamic Responses of Cfrps
,”
Compos. Sci. Technol.
,
208
, p.
108747
.
16.
Lowe
,
M.
,
Alleyne
,
D.
, and
Cawley
,
P.
,
1998
, “
The Mode Conversion of a Guided Wave by a Part-Circumferential Notch in a Pipe
,”
J. Appl. Mech.
,
65
(
3
), pp.
649
656
.
17.
Mitra
,
A. K.
,
Aradhye
,
A. A.
, and
Joglekar
,
D. M.
,
2023
, “
Low Frequency Ultrasonic Guided Wave Propagation Through Honeycomb Sandwich Structures With Non-Uniform Core Thickness
,”
Mech. Syst. Signal. Process.
,
191
, p.
110155
.
18.
Sikdar
,
S.
,
Van Paepegem
,
W.
,
Ostachowicz
,
W.
, and
Kersemans
,
M.
,
2020
, “
Nonlinear Elastic Wave Propagation and Breathing-Debond Identification in a Smart Composite Structure
,”
Compos. Part B: Eng.
,
200
, p.
108304
.
19.
Joglekar
,
D. M.
, and
Mitra
,
M.
,
2016
, “
Analysis of Flexural Wave Propagation Through Beams With a Breathing Crack Using Wavelet Spectral Finite Element Method
,”
Mech. Syst. Signal. Process.
,
76
, pp.
576
591
.
20.
Biwa
,
S.
,
Nakajima
,
S.
, and
Ohno
,
N.
,
2004
, “
On the Acoustic Nonlinearity of Solid-Solid Contact With Pressure-Dependent Interface Stiffness
,”
ASME J. Appl. Mech.
,
71
(
4
), pp.
508
515
.
21.
Gangwar
,
A. S.
,
Agrawal
,
Y.
, and
Joglekar
,
D.
,
2021
, “
Nonlinear Interactions of Lamb Waves With a Delamination in Composite Laminates
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
4
(
3
), p.
031008
.
22.
Soleimanpour
,
R.
, and
Ng
,
C.-T.
,
2017
, “
Locating Delaminations in Laminated Composite Beams Using Nonlinear Guided Waves
,”
Eng. Struct.
,
131
, pp.
207
219
.
23.
Agrawal
,
Y.
,
Gangwar
,
A. S.
, and
Joglekar
,
D.
,
2022
, “
Localization of a Breathing Delamination Using Nonlinear Lamb Wave Mixing
,”
ASME J. Nondestr. Eval. Diagn. Progn. Eng. Syst.
,
5
(
3
), p.
031005
.
24.
Zhang
,
Y.
,
Hart
,
J. D.
, and
Needleman
,
A.
,
2019
, “
Identification of Plastic Properties From Conical Indentation Using a Bayesian-Type Statistical Approach
,”
ASME J. Appl. Mech.
,
86
(
1
), p.
011002
.
25.
Thiem
,
J.
,
Cole
,
D. P.
,
Dubey
,
U.
,
Srivastava
,
A.
,
Ashraf
,
C.
,
Henry
,
T. C.
,
Bakis
,
C. E.
, and
Vashisth
,
A.
,
2022
, “
Using Data Science to Locate Nanoparticles in a Polymer Matrix Composite
,”
Compos. Sci. Technol.
,
218
, p.
109205
.
26.
Lee
,
D.
,
Huang
,
Y.
, and
Achenbach
,
J. D.
,
2016
, “
Probabilistic Analysis of Stress Corrosion Crack Growth and Related Structural Reliability Considerations
,”
ASME J. Appl. Mech.
,
83
(
2
), p.
021003
.
27.
Muto
,
M.
, and
Beck
,
J. L.
,
2008
, “
Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation
,”
J. Vib. Control
,
14
(
1–2
), pp.
7
34
.
28.
Parno
,
M.
,
Hodgdon
,
T.
,
West
,
B.
,
O’Connor
,
D.
, and
Song
,
A.
,
2021
, “
A Bayesian Approach for Inferring Sea Ice Loads
,”
ASME J. Appl. Mech.
,
88
(
6
), p.
061008
.
29.
DiazDelaO
,
F.
,
Garbuno-Inigo
,
A.
,
Au
,
S.
, and
Yoshida
,
I.
,
2017
, “
Bayesian Updating and Model Class Selection With Subset Simulation
,”
Comput. Methods. Appl. Mech. Eng.
,
317
, pp.
1102
1121
.
30.
Chuaqui
,
T.
,
Rhead
,
A.
,
Butler
,
R.
, and
Scarth
,
C.
,
2021
, “
A Data-Driven Bayesian Optimisation Framework for the Design and Stacking Sequence Selection of Increased Notched Strength Laminates
,”
Compos. Part B: Eng.
,
226
, p.
109347
.
31.
He
,
S.
, and
Ng
,
C.-T.
,
2016
, “
A Probabilistic Approach for Quantitative Identification of Multiple Delaminations in Laminated Composite Beams Using Guided Waves
,”
Eng. Struct.
,
127
, pp.
602
614
.
32.
He
,
S.
, and
Ng
,
C.-T.
,
2017
, “
Guided Wave-Based Identification of Multiple Cracks in Beams Using a Bayesian Approach
,”
Mech. Syst. Signal. Process.
,
84
, pp.
324
345
.
33.
Chan
,
W.
, and
Chou
,
C.
,
1995
, “
Effects of Delamination and Ply Fiber Waviness on Effective Axial and Bending Stiffnesses in Composite Laminates
,”
Compos. Struct.
,
30
(
3
), pp.
299
306
.
34.
Thomas
,
A. J.
,
Barocio
,
E.
,
Bilionis
,
I.
, and
Pipes
,
R. B.
,
2022
, “
Bayesian Inference of Fiber Orientation and Polymer Properties in Short Fiber-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
228
, p.
109630
.
35.
Hossain
,
M.
, and
Steinmann
,
P.
,
2011
, “
Modelling and Simulation of the Curing Process of Polymers by a Modified Formulation of the Arruda–Boyce Model
,”
Arch. Mech.
,
63
(
5–6
), pp.
621
633
.
36.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2008
, “
Wave Propagation Analysis in Anisotropic Plate Using Wavelet Spectral Element Approach
,”
ASME J. Appl. Mech.
,
75
(
1
), p.
014504
.
37.
Shen
,
Y.
,
2014
, “Structural Health Monitoring Using Linear and Nonlinear Ultrasonic Guided Waves,” Ph.D. thesis,
University of South Carolina
,
Columbia, SC
.
38.
Destrade
,
M.
,
Gilchrist
,
M. D.
, and
Murphy
,
J. G.
,
2010
, “
Onset of Nonlinearity in the Elastic Bending of Blocks
,”
ASME J. Appl. Mech.
,
77
(
6
), p.
061015
.
39.
Yuen
,
K.-V.
,
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
2006
, “
Unified Probabilistic Approach for Model Updating and Damage Detection
,”
ASME J. Appl. Mech.
,
73
(
4
), pp.
555
564
.
40.
Andrieu
,
C.
,
De Freitas
,
N.
,
Doucet
,
A.
, and
Jordan
,
M. I.
,
2003
, “
An Introduction to Mcmc for Machine Learning
,”
Mach. Learn.
,
50
(
1
), pp.
5
43
.
41.
Rappel
,
H.
,
Beex
,
L. A.
,
Hale
,
J. S.
,
Noels
,
L.
, and
Bordas
,
S.
,
2020
, “
A Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics
,”
Arch. Comput. Methods Eng.
,
27
(
2
), pp.
361
385
.
42.
Zuev
,
K. M.
,
Beck
,
J. L.
,
Au
,
S. -K.
, and
Katafygiotis
,
L. S.
,
2012
, “
Bayesian Post-Processor and Other Enhancements of Subset Simulation for Estimating Failure Probabilities in High Dimensions
,”
Comput. Struct.
,
92
, pp.
283
296
.
You do not currently have access to this content.