Abstract

Data-driven equation identification for dynamical systems has achieved great progress, which for static systems, however, has not kept pace. Unlike dynamical systems, static systems are time invariant, so we cannot capture discrete data along the time stream, which requires identifying governing equations only from scarce data. This work is devoted to this topic, building a data-driven method for extracting the differential-variational equations that govern static behaviors only from scarce, noisy data of responses, loads, as well as the values of system attributes if available. Compared to the differential framework typically adopted in equation identification, the differential-variational framework, due to its spatial integration and variation arbitrariness, brings some advantages, such as high robustness to data noise and low requirements on data amounts. The application, efficacy, and all the aforementioned advantages of this method are demonstrated by four numerical examples, including three continuous systems and one discrete system.

References

1.
Hey
,
T.
,
Tansley
,
S.
, and
Tolle
,
K. M.
,
2009
,
The Fourth Paradigm: Data-Intensive Scientific Discovery
,
Microsoft Research
,
Redmond, WA
.
2.
Bongard
,
J.
, and
Lipson
,
H.
,
2007
, “
Automated Reverse Engineering of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U.S.A
,
104
(
24
), pp.
9943
9948
.
3.
Schmidt
,
M.
, and
Lipson
,
H.
,
2009
, “
Distilling Free-Form Natural Laws From Experimental Data
,”
Science
,
324
(
5923
), pp.
81
85
.
4.
Quade
,
M.
,
Abel
,
M.
,
Shafi
,
K.
,
Niven
,
R. K.
, and
Noack
,
B. R.
,
2016
, “
Prediction of Dynamical Systems by Symbolic Regression
,”
Phys. Rev. E
,
94
(
1
), p.
012214
.
5.
Brunton
,
S. L.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Discovering Governing Equations From Data by Sparse Identification of Nonlinear Dynamical Systems
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
15
), pp.
3932
3937
.
6.
Wang
,
W.-X.
,
Yang
,
R.
,
Lai
,
Y.-C.
,
Kovanis
,
V.
, and
Grebogi
,
C.
,
2011
, “
Predicting Catastrophes in Nonlinear Dynamical Systems by Compressive Sensing
,”
Phys. Rev. Lett.
,
106
(
15
), p.
154101
.
7.
Schaeffer
,
H.
, and
McCalla
,
S. G.
,
2017
, “
Sparse Model Selection via Integral Terms
,”
Phys. Rev. E
,
96
(
2
), p.
023302
.
8.
Udrescu
,
S.-M.
, and
Tegmark
,
M.
,
2020
, “
AI Feynman: A Physics-Inspired Method for Symbolic Regression
,”
Sci. Adv.
,
6
(
16
), p.
eaay2631
.
9.
Udrescu
,
S.-M.
,
Tan
,
A.
,
Feng
,
J.
,
Neto
,
O.
,
Wu
,
T.
, and
Tegmark
,
M.
,
2020
, “
AI Feynman 2.0: Pareto-Optimal Symbolic Regression Exploiting Graph Modularity
,”
Advances in Neural Information Processing Systems
,
Vancouver, Canada
.
10.
Huang
,
Z.
,
Tian
,
Y.
,
Li
,
C.
,
Lin
,
G.
,
Wu
,
L.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2020
, “
Data-Driven Automated Discovery of Variational Laws Hidden in Physical Systems
,”
J. Mech. Phys. Solids
,
2020
(
137
), p.
103871
.
11.
Reinbold
,
P. A.
,
Gurevich
,
D. R.
, and
Grigoriev
,
R. O.
,
2020
, “
Using Noisy or Incomplete Data to Discover Models of Spatiotemporal Dynamics
,”
Phys. Rev. E
,
101
(
1
), p.
010203
.
12.
Chen
,
R. T.
,
Rubanova
,
Y.
,
Bettencourt
,
J.
, and
Duvenaud
,
D. K.
,
2018
, “
Neural Ordinary Differential Equations
,”
Advances in Neural Information Processing Systems
,
Montréal, Canada
.
13.
Dupont
,
E.
,
Doucet
,
A.
, and
Teh
,
Y. W.
,
2019
, “
Augmented Neural ODEs
,”
Proceedings of the 33rd International Conference on Neural Information Processing Systems
,
Vancouver Canada
,
Dec. 8
, Curran Associates Inc., Article 282.
14.
Cranmer
,
M.
,
Greydanus
,
S.
,
Hoyer
,
S.
,
Battaglia
,
P.
,
Spergel
,
D.
, and
Ho
,
S.
,
2020
, “Lagrangian Neural Networks,” arXiv preprint arXiv:2003.04630.
15.
Mattheakis
,
M.
,
Sondak
,
D.
,
Dogra
,
A. S.
, and
Protopapas
,
P.
,
2022
, “
Hamiltonian Neural Networks for Solving Equations of Motion
,”
Phys. Rev. E
,
105
(
6
), p.
065305
.
16.
Greydanus
,
S.
,
Dzamba
,
M.
, and
Yosinski
,
J.
,
2019
, “
Hamiltonian Neural Networks
,”
Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
,
Vancouver Canada
.
17.
Finzi
,
M.
,
Wang
,
K. A.
, and
Wilson
,
A. G.
,
2020
, “
Simplifying Hamiltonian and Lagrangian Neural Networks via Explicit Constraints
,”
Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
,
Virtual-only Conference
.
18.
Li
,
Z.
,
Ji
,
J.
, and
Zhang
,
Y.
,
2021
, “From Kepler to Newton: Explainable AI for Science Discovery,” arXiv preprint arXiv:2111.12210.
19.
Liu
,
Z.
,
Wang
,
B.
,
Meng
,
Q.
,
Chen
,
W.
,
Tegmark
,
M.
, and
Liu
,
T.-Y.
,
2021
, “
Machine-Learning Nonconservative Dynamics for New-Physics Detection
,”
Phys. Rev. E
,
104
(
5
), p.
055302
.
20.
Mukhopadhyay
,
S. C.
,
Jayasundera
,
K. P.
, and
Postolache
,
O. A.
,
2018
,
Modern Sensing Technologies
,
Springer
,
New York
.
21.
Li
,
C.
,
Huang
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2021
, “
Rapid Identification of Switched Systems: A Data-Driven Method in Variational Framework
,”
Sci. China Technol. Sci.
,
64
(
1
), pp.
148
156
.
22.
Li
,
C.
,
Huang
,
Z.
,
Huang
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2022
, “
Digital Twins in Engineering Dynamics: Variational Equation Identification, Feedback Control Design and Their Rapid Update
,”
Nonlinear Dyn.
,
2023
(
111
), pp.
1
16
.
23.
Whittaker
,
E. T.
,
1964
,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
,
CUP Archive
.
24.
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2022
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
,
Cambridge University Press
.
25.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection via the Lasso
,”
J. R. Stat. Soc., B: Stat. Methodol.
,
58
(
1
), pp.
267
288
.
26.
Boninsegna
,
L.
,
Nüske
,
F.
, and
Clementi
,
C.
,
2018
, “
Sparse Learning of Stochastic Dynamical Equations
,”
J. Chem. Phys.
,
148
(
24
), p.
241723
.
27.
Hastie
,
T.
,
Tibshirani
,
R.
,
Friedman
,
J. H.
, and
Friedman
,
J. H.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer
,
New York
.
28.
Timoshenko
,
S.
,
1970
,
Theory of Elastic Stability 2e
,
Tata McGraw-Hill Education
.
29.
Gjelsvik
,
A.
,
1981
,
The Theory of Thin Walled Bars
,
Wiley
,
New York
.
30.
Huang
,
Z.
,
Li
,
C.
,
Huang
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2021
, “
AI-Timoshenko: Automatedly Discovering Simplified Governing Equations for Applied Mechanics Problems From Simulated Data
,”
ASME J. Appl. Mech.
,
88
(
10
), p.
101006
.
You do not currently have access to this content.