Abstract

The fisherman’s knot, renowned for its strength and reliability, finds applications in engineering and medicine. However, a comprehensive understanding of its mechanics remains limited in scientific literature. In this paper, we present a systematic study of the tightening behavior of the fisherman’s knot through a combined approach of tabletop experiments and discrete elastic rods simulations. Our experimental setup involves gradually applying tension to the two ends of the fisherman’s knot until it fractures. We observed a correlation between the knot’s material properties and its behavior during tightening, leading up to fracture. The tightening process of the fisherman’s knot exhibits distinct “sliding” or “stretching” motions, influenced by factors such as friction and elastic stiffness. Furthermore, the failure modes of the knot (material fracture and topological failure) are determined by an interplay between elastic stiffness, friction, and initial conditions. This study sheds light on the underlying mechanics of the fisherman’s knot and provides insight into its behavior during the tightening process, contributing to the broader understanding of the mechanics of knots in practical applications.

References

1.
Lickorish
,
W. R.
,
2012
,
An Introduction to Knot Theory
, Vol.
175
,
Springer Science & Business Media
,
New York
.
2.
Stasiak
,
A.
,
Dobay
,
A.
,
Dubochet
,
J.
, and
Dietler
,
G.
,
1999
, “
Knotted Fishing Line, Covalent Bonds, and Breaking Points
,”
Science
,
286
(
5437
), pp.
11
11
.
3.
Sumners
,
D.
, and
Whittington
,
S.
,
1988
, “
Knots in Self-Avoiding Walks
,”
J. Phys. A: Math. Gen.
,
21
(
7
), p.
1689
.
4.
Marenduzzo
,
D.
,
Micheletti
,
C.
,
Orlandini
,
E.
, and
Sumners
,
D. W.
,
2013
, “
Topological Friction Strongly Affects Viral Dna Ejection
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
50
), pp.
20081
20086
.
5.
Olavarrieta
,
L.
,
Hernandez
,
P.
,
Krimer
,
D. B.
, and
Schvartzman
,
J. B.
,
2002
, “
Dna Knotting Caused by Head-On Collision of Transcription and Replication
,”
J. Mol. Biol.
,
322
(
1
), pp.
1
6
.
6.
Mann
,
J. K.
,
2007
,
DNA Knotting: Occurrences, Consequences & Resolution
,
The Florida State University
,
Tallahassee, FL
.
7.
Wagner
,
J. R.
,
Brunzelle
,
J. S.
,
Forest
,
K. T.
, and
Vierstra
,
R. D.
,
2005
, “
A Light-Sensing Knot Revealed by the Structure of the Chromophore-Binding Domain of Phytochrome
,”
Nature
,
438
(
7066
), pp.
325
331
.
8.
Lim
,
N. C.
, and
Jackson
,
S. E.
,
2015
, “
Molecular Knots in Biology and Chemistry
,”
J. Phys.: Condens. Matter
,
27
(
35
), p.
354101
.
9.
Tong
,
D.
,
Choi
,
A.
,
Joo
,
J.
,
Borum
,
A.
, and
Khalid Jawed
,
M.
,
2023
, “
Snap Buckling in Overhand Knots
,”
ASME J. Appl. Mech.
,
90
(
4
), p.
041008
.
10.
Patil
,
V. P.
,
Sandt
,
J. D.
,
Kolle
,
M.
, and
Dunkel
,
J.
,
2020
, “
Topological Mechanics of Knots and Tangles
,”
Science
,
367
(
6473
), pp.
71
75
.
11.
Patil
,
V. P.
,
Kos
,
Ž.
,
Ravnik
,
M.
, and
Dunkel
,
J.
,
2020
, “
Discharging Dynamics of Topological Batteries
,”
Phys. Rev. Res.
,
2
(
4
), p.
043196
.
12.
Patil
,
V. P.
,
Tuazon
,
H.
,
Kaufman
,
E.
,
Chakrabortty
,
T.
,
Qin
,
D.
,
Dunkel
,
J.
, and
Bhamla
,
M. S.
,
2023
, “
Ultrafast Reversible Self-Assembly of Living Tangled Matter
,”
Science
,
380
(
6643
), pp.
392
398
.
13.
Moulton
,
D. E.
,
Grandgeorge
,
P.
, and
Neukirch
,
S.
,
2018
, “
Stable Elastic Knots With No Self-Contact
,”
J. Mech. Phys. Solids
,
116
, pp.
33
53
.
14.
Clauvelin
,
N.
,
Audoly
,
B.
, and
Neukirch
,
S.
,
2009
, “
Matched Asymptotic Expansions for Twisted Elastic Knots: A Self-Contact Problem With Non-Trivial Contact Topology
,”
J. Mech. Phys. Solids
,
57
(
9
), pp.
1623
1656
.
15.
Ibrahim Khalil
,
M.
,
Tong
,
D.
,
Wang
,
G.
,
Khalid Jawed
,
M.
, and
Khoda
,
B.
,
2022
, “
Systematic Variation of Friction of Rods
,”
ASME J. Appl. Mech.
,
89
(
11
), p.
111007
.
16.
Sano
,
T. G.
,
Johanns
,
P.
,
Grandgeorge
,
P.
,
Baek
,
C.
, and
Reis
,
P. M.
,
2022
, “
Exploring the Inner Workings of the Clove Hitch Knot
,”
Extreme Mech. Lett.
,
55
, p.
101788
.
17.
Baek
,
C.
,
Johanns
,
P.
,
Sano
,
T. G.
,
Grandgeorge
,
P.
, and
Reis
,
P. M.
,
2021
, “
Finite Element Modeling of Tight Elastic Knots
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
024501
.
18.
Kim
,
S.-H.
,
Yoo
,
J. C.
,
Wang
,
J. H.
,
Choi
,
K. W.
,
Bae
,
T. S.
, and
Lee
,
C. Y.
,
2005
, “
Arthroscopic Sliding Knot: How Many Additional Half-Hitches Are Really Needed
?”
Arthrosc. J. Arthrosc. Relat. Surg.
,
21
(
4
), pp.
405
411
.
19.
Taysi
,
A. E.
,
Taysi
,
N. M.
, and
Sismanoglu
,
S.
,
2023
, “
Does Knot Configuration Improve Tensile Characteristics of Monofilament Suture Materials
?”
J. Oral Maxillo. Surg.
,
81
(
1
), pp.
72
79
.
20.
Calvaresi
,
M.
,
Duwez
,
A.-S.
,
Leigh
,
D. A.
,
Sluysmans
,
D.
,
Song
,
Y.
,
Zerbetto
,
F.
, and
Zhang
,
L.
,
2023
, “
Mechanical Tightening of a Synthetic Molecular Knot
,”
Chem
,
9
(
1
), pp.
65
75
.
21.
Audoly
,
B.
,
Clauvelin
,
N.
, and
Neukirch
,
S.
,
2007
, “
Elastic Knots
,”
Phys. Rev. Lett.
,
99
(
16
), p.
164301
.
22.
Jawed
,
M. K.
,
Dieleman
,
P.
,
Audoly
,
B.
, and
Reis
,
P. M.
,
2015
, “
Untangling the Mechanics and Topology in the Frictional Response of Long Overhand Elastic Knots
,”
Phys. Rev. Lett.
,
115
(
11
), p.
118302
.
23.
Kang
,
M. H.
,
Seong
,
M.
,
Lim
,
H. W.
, and
Cho
,
H. Y.
,
2014
, “
Simple Method to Restore a Fractured 10-0 Polypropylene Suture Using a Single Fisherman’s Knot
,”
J. Catar. Refract. Surg.
,
40
(
9
), pp.
1568
1570
.
24.
Bergou
,
M.
,
Wardetzky
,
M.
,
Robinson
,
S.
,
Audoly
,
B.
, and
Grinspun
,
E.
,
2008
, “
Discrete Elastic Rods
,”
ACM Trans. Graph. (TOG)
,
27
(
3
), p.
63
.
25.
Bergou
,
M.
,
Audoly
,
B.
,
Vouga
,
E.
,
Wardetzky
,
M.
, and
Grinspun
,
E.
,
2010
, “
Discrete Viscous Threads
,”
ACM Trans. Graph. (TOG)
,
29
(
4
), p.
116
.
26.
Jawed
,
M. K.
,
Da
,
F.
,
Joo
,
J.
,
Grinspun
,
E.
, and
Reis
,
P. M.
,
2014
, “
Coiling of Elastic Rods on Rigid Substrates
,”
Proc. Natl. Acad. Sci. U. S. A.
,
111
(
41
), pp.
14663
14668
.
27.
Tong
,
D.
,
Borum
,
A.
, and
Jawed
,
M. K.
,
2021
, “
Automated Stability Testing of Elastic Rods With Helical Centerlines Using a Robotic System
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1126
1133
.
28.
Choi
,
A.
,
Tong
,
D.
,
Jawed
,
M. K.
, and
Joo
,
J.
,
2021
, “
Implicit Contact Model for Discrete Elastic Rods in Knot Tying
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051010
.
29.
Tong
,
D.
,
Choi
,
A.
,
Joo
,
J.
, and
Jawed
,
M. K.
,
2023
, “
A Fully Implicit Method for Robust Frictional Contact Handling in Elastic Rods
,”
Extrem. Mech. Lett.
,
58
, p.
101924
.
30.
Lumelsky
,
V. J.
,
1985
, “
On Fast Computation of Distance Between Line Segments
,”
Inf. Process. Lett.
,
21
(
2
), pp.
55
61
.
You do not currently have access to this content.