Abstract

Honeycomb mechanical metamaterials with semi-re-entrant, square and hexagonal cells were prepared by using continuous twill weave carbon fiber prepreg. Out-of-plane crushing behavior of carbon fiber reinforced polymer (CFRP) honeycomb mechanical materials was investigated experimentally and theoretically. The full-field strain evolution and distribution of buckling modes were obtained. Analytical models were proposed to predict Young's moduli, buckling half-wave numbers, and initial collapse stresses of CFRP honeycomb cores and sandwich panels. The analytical predictions are in good agreement with the experimental results. It is shown that the face sheets have significant effects on the crushing behavior of CFRP honeycombs. The strength, stiffness and energy absorption of CFRP honeycombs are dependent upon the configuration, height and boundary condition. CFRP honeycombs exhibit higher specific strength and specific energy absorption than the counterparts.

References

1.
Yang
,
Z.
, and
Alam
,
P.
,
2021
, “
Designing Hierarchical Honeycombs to Mimic the Mechanical Behaviour of Composites
,”
J. Compos. Sci.
,
5
(
1
), p.
5010017
.
2.
Ding
,
Y.
,
Wang
,
S.
,
Sun
,
Z.
, and
Shim
,
V. P. W.
,
2023
, “
Density-Graded Voronoi Honeycombs—A Local Transversely Isotropic Description
,”
Int. J. Solids Struct.
,
285
, p.
112555
.
3.
Xue
,
P.
,
Wei
,
X.
,
Li
,
Z.
,
Wang
,
Y.
,
Selivanov
,
M. F.
, and
Xiong
,
J.
,
2024
, “
Mechanics of Inner Core Debonding of Composite Sandwich Beam with CFRP Hexagonal Honeycomb
,”
Int. J. Solids Struct.
,
293
, p.
112760
.
4.
Yan
,
H.
,
Fu
,
B.
,
Shan
,
Y.
,
Sun
,
Y.
, and
Yao
,
X.
,
2024
, “
A Fully Coupled Electromagnetic-Thermo-Mechanical Model for Honeycomb Microwave Absorbing Structure
,”
Int. J. Solids Struct.
,
289
, p.
112646
.
5.
Wei
,
X.
,
Xiong
,
J.
,
Wang
,
J.
, and
Xu
,
W.
,
2020
, “
New Advances in Fiber-Reinforced Composite Honeycomb Materials
,”
Sci. China: Technol. Sci.
,
63
(
8
), pp.
1348
1370
.
6.
Wang
,
Z.
,
Qin
,
Q.
,
Chen
,
S.
,
Yu
,
X.
,
Li
,
H.
, and
Wang
,
T. J.
,
2017
, “
Compressive Crushing of Novel Aluminum Hexagonal Honeycombs with Perforations: Experimental and Numerical Investigations
,”
Int. J. Solids Struct.
,
126–127
, pp.
187
195
.
7.
Cheng
,
Y.
,
Li
,
J.
,
Qian
,
X.
, and
Rudykh
,
S.
,
2021
, “
3D Printed Recoverable Honeycomb Composites Reinforced by Continuous Carbon Fibers
,”
Compos. Struct.
,
268
, p.
113974
.
8.
Gan
,
J.
,
Li
,
F.
,
Li
,
K.
,
Li
,
E.
, and
Li
,
B.
,
2023
, “
Dynamic Failure of 3D Printed Negative-Stiffness Meta-Sandwich Structures Under Repeated Impact Loadings
,”
Compos. Sci. Technol.
,
234
, p.
109928
.
9.
Mehreganian
,
N.
,
Fallah
,
A. S.
, and
Sareh
,
P.
,
2021
, “
Structural Mechanics of Negative Stiffness Honeycomb Metamaterials
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051006
.
10.
Fang
,
X.
,
Wen
,
J.
,
Cheng
,
L.
,
Yu
,
D.
,
Zhang
,
H.
, and
Gumbsch
,
P.
,
2022
, “
Programmable Gear-Based Mechanical Metamaterials
,”
Nat. Mater.
,
21
(
8
), pp.
869
876
.
11.
Florijn
,
B.
,
Coulais
,
C.
, and
van Hecke
,
M.
,
2014
, “
Programmable Mechanical Metamaterials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
175503
.
12.
Pan
,
F.
,
Li
,
Y.
,
Li
,
Z.
,
Yang
,
J.
,
Liu
,
B.
, and
Chen
,
Y.
,
2019
, “
3D Pixel Mechanical Metamaterials
,”
Adv. Mater.
,
31
(
25
), p.
1900548
.
13.
Tao
,
R.
,
Xi
,
L.
,
Wu
,
W.
,
Li
,
Y.
,
Liao
,
B.
,
Liu
,
L.
,
Leng
,
J.
, and
Fang
,
D.
,
2020
, “
4D Printed Multi-Stable Metamaterials with Mechanically Tunable Performance
,”
Compos. Struct.
,
252
, p.
112663
.
14.
Melancon
,
D.
,
Gorissen
,
B.
,
García-Mora
,
C. J.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2021
, “
Multistable Inflatable Origami Structures at the Metre Scale
,”
Nature
,
592
(
7855
), pp.
545
550
.
15.
Quan
,
C.
,
Han
,
B.
,
Hou
,
Z.
,
Zhang
,
Q.
,
Tian
,
X.
, and
Lu
,
T. J.
,
2020
, “
3d Printed Continuous Fiber Reinforced Composite Auxetic Honeycomb Structures
,”
Composites, Part B
,
187
, p.
107858
.
16.
Nicolaou
,
Z. G.
, and
Motter
,
A. E.
,
2012
, “
Mechanical Metamaterials with Negative Compressibility Transitions
,”
Nat. Mater.
,
11
(
7
), pp.
608
613
.
17.
Grima
,
J. N.
,
Oliveri
,
L.
,
Attard
,
D.
,
Ellul
,
B.
,
Gatt
,
R.
,
Cicala
,
G.
, and
Recca
,
G.
,
2010
, “
Hexagonal Honeycombs with Zero Poisson's Ratios and Enhanced Stiffness
,”
Adv. Eng. Mater.
,
12
(
9
), pp.
855
862
.
18.
Liu
,
Y.
,
Qin
,
Z.
, and
Chu
,
F.
,
2023
, “
A Nonlinear Repeated Impact Model of Auxetic Honeycomb Structures Considering Geometric Nonlinearity and Tensile/Compressive Deformation
,”
ASME J. Appl. Mech.
,
90
(
9
), p.
091008
.
19.
Zhou
,
Y.
,
Pan
,
Y.
,
Gao
,
Q.
, and
Sun
,
B.
,
2023
, “
IN-Plane Quasi-Static Crushing Behaviors of a Novel Reentrant Combined-Wall Honeycomb
,”
ASME J. Appl. Mech.
,
90
(
5
), p.
051002
.
20.
Li
,
Z.
,
Xue
,
P.
, and
Xiong
,
J.
,
2025
, “
Fabrication and Mechanical Properties of CFRP Honeycomb Cylinder Based on the Transforming From the Flat Honeycombs
,”
Compos. Sci. Technol.
,
259
, p.
110948
.
21.
Michelis
,
P.
, and
Spitas
,
V.
,
2010
, “
Numerical and Experimental Analysis of a Triangular Auxetic Core Made of CFR-PEEK Using the Directionally Reinforced Integrated Single-Yarn (DIRIS) Architecture
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1064
1071
.
22.
Sun
,
Z.
,
Li
,
D.
,
Zhang
,
W.
,
Shi
,
S.
, and
Guo
,
X.
,
2017
, “
Topological Optimization of Biomimetic Sandwich Structures with Hybrid Core and CFRP Face Sheets
,”
Compos. Sci. Technol.
,
142
, pp.
79
90
.
23.
Wang
,
P.
,
Zhang
,
Y.
,
Chen
,
H.
,
Zhou
,
Y.
,
Jin
,
F.
, and
Fan
,
H.
,
2018
, “
Broadband Radar Absorption and Mechanical Behaviors of Bendable Over-Expanded Honeycomb Panels
,”
Compos. Sci. Technol.
,
162
, pp.
33
48
.
24.
Wei
,
X.
,
Xue
,
P.
,
Wu
,
Q.
,
Wang
,
Y.
, and
Xiong
,
J.
,
2022
, “
Debonding Characteristics and Strengthening Mechanics of all-CFRP Sandwich Beams with Interface-Reinforced Honeycomb Cores
,”
Compos. Sci. Technol.
,
218
, p.
109157
.
25.
Wu
,
E.
, and
Jiang
,
W.
,
1997
, “
Axial Crush of Metallic Honeycombs
,”
Int. J. Impact Eng.
,
19
(
5–6
), pp.
439
456
.
26.
Côté
,
F.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
,
2004
, “
The out-of-Plane Compressive Behavior of Metallic Honeycombs
,”
Mater. Sci. Eng. A
,
380
(
1–2
), pp.
272
280
.
27.
Parsons
,
R.
,
Frink
,
E.
,
Lease
,
K.
, and
Dubnicka
,
S.
,
2013
, “
Compressive Behavior of Square-Cell Titanium Honeycomb
,”
J. Test. Eval.
,
41
(
2
), pp.
179
187
.
28.
Xiong
,
J.
,
Vaziri
,
A.
,
Ghosh
,
R.
,
Hu
,
H.
,
Ma
,
L.
, and
Wu
,
L.
,
2016
, “
Compression Behavior and Energy Absorption of Carbon Fiber Reinforced Composite Sandwich Panels Made of Three-Dimensional Honeycomb Grid Cores
,”
Extreme Mech. Lett.
,
7
, pp.
114
120
.
29.
Russell
,
B. P.
,
Deshpande
,
V. S.
, and
Wadley
,
H. N. G.
,
2008
, “
Quasistatic Deformation and Failure Modes of Composite Square Honeycombs
,”
J. Mech. Mater. Struct.
,
3
(
7
), pp.
1315
1340
.
30.
Park
,
S.
,
Russell
,
B. P.
,
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2012
, “
Dynamic Compressive Response of Composite Square Honeycombs
,”
Composites, Part A
,
43
(
3
), pp.
527
536
.
31.
Russell
,
B. P.
,
Liu
,
T.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2011
, “
Quasi-Static Three-Point Bending of Carbon Fiber Sandwich Beams with Square Honeycomb Cores
,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031008
.
32.
Russell
,
B. P.
,
Liu
,
T.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
,
2012
, “
The Soft Impact of Composite Sandwich Beams with a Square-Honeycomb Core
,”
Int. J. Impact Eng.
,
48
, pp.
65
81
.
33.
Li
,
J.
,
Qin
,
Q.
,
Zhang
,
W.
,
Wang
,
Q.
, and
Peng
,
J.
,
2023
, “
On Quasi-Static and Dynamic Compressive Behaviors of Interlocked Composite Kagome Lattice Structures
,”
ASME J. Appl. Mech.
,
90
(
3
), p.
031007
.
34.
Fan
,
H.
,
Yang
,
L.
,
Sun
,
F.
, and
Fang
,
D.
,
2013
, “
Compression and Bending Performances of Carbon Fiber Reinforced Lattice-Core Sandwich Composites
,”
Composites, Part A
,
52
, pp.
118
125
.
35.
Fan
,
H. L.
,
Meng
,
F. H.
, and
Yang
,
W.
,
2007
, “
Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers
,”
Compos. Struct.
,
81
(
4
), pp.
533
539
.
36.
Pehlivan
,
L.
, and
Baykasoğlu
,
C.
,
2019
, “
An Experimental Study on the Compressive Response of CFRP Honeycombs with Various Cell Configurations
,”
Composites, Part B
,
162
, pp.
653
661
.
37.
Chen
,
X.
,
Yu
,
G.
,
Wang
,
Z.
,
Feng
,
L.
, and
Wu
,
L.
,
2021
, “
Enhancing out-of-Plane Compressive Performance of Carbon Fiber Composite Honeycombs
,”
Compos. Struct.
,
255
, p.
112984
.
38.
Zhao
,
W.
,
Liu
,
Z.
,
Yu
,
G.
, and
Wu
,
L.
,
2021
, “
A new Multifunctional Carbon Fiber Honeycomb Sandwich Structure with Excellent Mechanical and Thermal Performances
,”
Compos. Struct.
,
274
, p.
114306
.
39.
Lin
,
Y.
,
Yang
,
Z.
,
Wang
,
X.
,
Zuo
,
X.
,
Li
,
Z.
,
Guan
,
Z.
,
Li
,
J.
, and
Jiang
,
Y.
,
2022
, “
The Design of Continuous Carbon Fiber Composite Honeycombs and Study on its Properties
,”
J. Compos. Mater.
,
56
(
24
), pp.
3729
3747
.
40.
Wei
,
X.
,
Li
,
D.
, and
Xiong
,
J.
,
2019
, “
Fabrication and Mechanical Behaviors of an all-Composite Sandwich Structure with a Hexagon Honeycomb Core Based on the Tailor-Folding Approach
,”
Compos. Sci. Technol.
,
184
, p.
107878
.
41.
Xiong
,
J.
,
Ma
,
L.
,
Stocchi
,
A.
,
Yang
,
J.
,
Wu
,
L.
, and
Pan
,
S.
,
2014
, “
Bending Response of Carbon Fiber Composite Sandwich Beams with Three Dimensional Honeycomb Cores
,”
Compos. Struct.
,
108
, pp.
234
242
.
42.
Hou
,
Y.
,
Neville
,
R.
,
Scarpa
,
F.
,
Remillat
,
C.
,
Gu
,
B.
, and
Ruzzene
,
M.
,
2014
, “
Graded Conventional-Auxetic Kirigami Sandwich Structures: Flatwise Compression and Edgewise Loading
,”
Composites, Part B
,
59
, pp.
33
42
.
43.
Alia
,
R. A.
,
Zhou
,
J.
,
Guan
,
Z. W.
,
Qin
,
Q.
,
Duan
,
Y.
, and
Cantwell
,
W. J.
,
2020
, “
The Effect of Loading Rate on the Compression Properties of Carbon Fibre-Reinforced Epoxy Honeycomb Structures
,”
J. Compos. Mater.
,
54
(
19
), pp.
2565
2576
.
44.
Alia
,
R. A.
,
Al-Ali
,
O.
,
Kumar
,
S.
, and
Cantwell
,
W. J.
,
2018
, “
The Energy-Absorbing Characteristics of Carbon Fiber-Reinforced Epoxy Honeycomb Structures
,”
J. Compos. Mater.
,
53
(
9
), pp.
1145
1157
.
45.
Rao
,
S.
,
Thomas
,
J.
,
Aziz
,
A.
, and
Cantwell
,
W.
,
2019
, “
Manufacturing and Performance Evaluation of Carbon Fiber–Reinforced Honeycombs
,”
J. Compos. Sci.
,
3
(
1
), p.
3010013
.
46.
Wang
,
Z.
,
Li
,
J.
,
Zhang
,
W.
,
Jiao
,
J.
,
Yuan
,
Y.
, and
Qin
,
Q.
,
2024
, “
Fabrication and in-Plane Compressive Collapse of CFRP Honeycomb Metamaterials
,”
Compos. Sci. Technol.
,
258
, p.
110888
.
47.
D3518/D3518M, A.
,
2013
, “Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45 deg Laminate.”
48.
C365/C365M, A.
,
2011
, Standard Test Method for Flatwise Compressive Properties of Sandwich Cores.”
49.
Ericksen
,
W. S.
, and
March
,
H. W.
,
1958
, “
Compressive Buckling of Sandwich Panels Having Dissimilar Facings of Unequal Thickness
,” Report 1583-B.
50.
Abramovich
,
H.
,
2017
, “Stability of Composite Shell–Type Structures,”
Stability and Vibrations of Thin Walled Composite Structures
,
Woodhead Publishing
,
Duxford, UK
, pp.
253
428
.
51.
Takano
,
A.
,
2012
, “
Statistical Knockdown Factors of Buckling Anisotropic Cylinders Under Axial Compression
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051004
.
52.
Ha
,
N. S.
,
Pham
,
T. M.
,
Chen
,
W.
,
Hao
,
H.
, and
Lu
,
G.
,
2021
, “
Crashworthiness Analysis of bio-Inspired Fractal Tree-Like Multi-Cell Circular Tubes Under Axial Crushing
,”
Thin Walled Struct.
,
169
, p.
108315
.
53.
Li
,
Q. M.
,
Magkiriadis
,
I.
, and
Harrigan
,
J. J.
,
2016
, “
Compressive Strain at the Onset of Densification of Cellular Solids
,”
J. Cell. Plast.
,
42
(
5
), pp.
371
392
.
54.
Andrew
,
J. J.
,
Alhashmi
,
H.
,
Schiffer
,
A.
,
Kumar
,
S.
, and
Deshpande
,
V. S.
,
2021
, “
Energy Absorption and Self-Sensing Performance of 3D Printed CF/PEEK Cellular Composites
,”
Mater. Des.
,
208
, p.
109863
.
55.
Vitale
,
J. P.
,
Francucci
,
G.
,
Xiong
,
J.
, and
Stocchi
,
A.
,
2017
, “
Failure Mode Maps of Natural and Synthetic Fiber Reinforced Composite Sandwich Panels
,”
Composites, Part A
,
94
, pp.
217
225
.
56.
Guo
,
L.
,
Wang
,
H.
,
Yang
,
Y.
,
Li
,
W.
,
Qiu
,
Y.
,
Liu
,
Z.
, and
Zhang
,
Z.
,
2023
, “
A Multi-Scale Damage Model and Mechanical Behavior for Novel Light-Weight C/C Honeycomb Sandwich Structure
,”
J. Mater. Res. Technol.
,
25
, pp.
2097
2111
.
57.
Ashby
,
M. F.
,
2011
, “Chapter 4—Material Property Charts,”
Materials Selection in Mechanical Design
, 4th ed.,
Butterworth Heinemann Press
,
London
.
You do not currently have access to this content.