One approach to modeling fully developed shear flow of frictional granular materials is to use a yield condition and a flow rule, in an analogous way to that commonly employed in the fields of metal plasticity and soil mechanics. Typically, the yield condition of choice for granular materials is the Coulomb–Mohr criterion, as this constraint is relatively simple to apply but at the same time is also known to predict stresses that are in good agreement with experimental observations. On the other hand, there is no strong agreement within the engineering and applied mechanics community as to which flow rule is most appropriate, and this subject is still very much open to debate. This paper provides a review of the governing equations used to describe the flow of granular materials subject to the Coulomb–Mohr yield condition, concentrating on the coaxial and double-shearing flow rules in both plane strain and axially symmetric geometries. Emphasis is given to highly frictional materials, which are defined as those granular materials that possess angles of internal friction whose trigonometric sine is close in value to unity. Furthermore, a discussion is provided on the practical problems of determining the stress and velocity distributions in a gravity flow hopper, as well as the stress fields beneath a standing stockpile and within a stable rat-hole.

1.
Jaeger
,
H.
,
Nagel
,
S. R.
, and
Behringer
,
R. P.
, 1996, “
Granular Solids, Liquids, and Gases
,”
Rev. Mod. Phys.
0034-6861,
68
, pp.
1259
1273
.
2.
Brilliantov
,
N. V.
, and
Pöschel
,
T.
, 2004,
Kinetic Theory of Granular Gases
,
Oxford University Press
,
New York
.
3.
Campbell
,
C. S.
, 1990, “
Rapid Granular Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
22
, pp.
57
90
.
4.
Goldhirsch
,
I.
, 2003, “
Rapid Granular Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
35
, pp.
267
293
.
5.
Goldhirsch
,
I.
, and
Zanetti
,
G.
, 1993, “
Clustering Instability in Dissipative Gases
,”
Phys. Rev. Lett.
0031-9007,
70
, pp.
1619
1622
.
6.
Jenkins
,
J. T.
, and
Savage
,
S. B.
, 1983, “
A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic, Spherical Particles
,”
J. Fluid Mech.
0022-1120,
130
, pp.
187
202
.
7.
Kadanoff
,
L. P.
, 1999, “
Built Upon Sand: Theoretical Ideas Inspired by Granular Flows
,”
Rev. Mod. Phys.
0034-6861,
71
, pp.
435
444
.
8.
Lun
,
C. K. K.
, 1991, “
Kinetic Theory for Granular Flow of Dense, Slightly Inelastic, Slightly Rough Spheres
,”
J. Fluid Mech.
0022-1120,
233
, pp.
539
559
.
9.
T.
Pöschel
and
N. V.
Brilliantov
, eds., 2003,
Granular Gas Dynamics
,
Springer
,
New York
.
10.
Cleary
,
P. W.
,
Metcalfe
,
G.
, and
Liffman
,
K.
, 1998, “
How Well do Discrete Element Granular Flow Models Capture the Essentials of Mixing Processes?
,”
Appl. Math. Model.
0307-904X,
22
, pp.
995
1008
.
11.
Langston
,
P. A.
,
Tüzün
,
U.
, and
Heyes
,
D. M.
, 1995, “
Discrete Element Simulation of Granular Flow in 2D and 3D Hoppers: Dependence of Discharge Rate and Wall Stress on Particle Interactions
,”
Chem. Eng. Sci.
0009-2509,
50
, pp.
967
987
.
12.
Vu-Quoc
,
L.
,
Zhang
,
X.
, and
Walton
,
O. R.
, 2000, “
A 3D Discrete-Element Method for Dry Granular Flows of Ellipsoidal Particles
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
187
, pp.
483
528
.
13.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979, “
A Distinct Element Model for Granular Assemblies
,”
Geotechnique
,
29
, pp.
47
65
. 0016-8505
14.
Tordesillas
,
A.
, 2007, “
Force Chain Buckling, Unjamming Transitions and Shear Banding in Dense Granular Assemblies
,”
Philos. Mag.
,
87
, pp.
4987
5016
. 1478-6435
15.
de Gennes
,
P. G.
, 1999, “
Granular Matter: A Tentative View
,”
Rev. Mod. Phys.
0034-6861,
71
, pp.
S374
382
.
16.
Kolymbas
,
D.
, and
Wu
,
W.
, 1993, “
Introduction to Hypoplasticity
,”
Proceedings of the Modern Approaches to Plasticity
,
D.
Kolymbas
, ed.,
Elsevier
,
Amsterdam
, pp.
213
223
.
17.
Kolymbas
,
D.
, 1999,
Introduction to Hypoplasticity: Advances in Geotechnical Engineering
,
Balkema
,
Rotterdam
.
18.
Wu
,
W.
, and
Kolymbas
,
D.
, 2000, “
Hypoplasticity, Then and Now
,”
Constitutive Modelling of Granular Materials
,
D.
Kolymbas
, ed.,
Springer-Verlag
,
Berlin
, pp.
57
105
.
19.
Coulomb
,
C. A.
, 1776, “
Essai sur une Application des règles de maximis & minimis á quelques problèmes de statique, relatifs á l’architecture
,”
Mémoire de Mathématique & de Physique, présentés àl’Académie Royale des Sciences par divers Savans, & lûs dans ses Assemblées
,
7
, pp.
343
382
.
20.
Sokolovskii
,
V. V.
, 1965,
Statics of Granular Materials
,
Pergamon
,
Oxford
.
21.
Nedderman
,
R. M.
, 1992,
Statics and Kinematics of Granular Materials
,
Cambridge University Press
,
Cambridge
.
22.
Spencer
,
A. J. M.
, 1987,
Continuum Models of Discrete Systems
,
Balkema
,
Rotterdam
.
23.
Matsuoka
,
H.
, and
Nakai
,
T.
, 1974, “
Stress-Deformation and Strength Characteristics of Soils Under Three Different Principal Stresses
,”
Proceedings of the JSCE
, Vol. No.
232
, pp.
59
70
.
24.
Collins
,
I. F.
, 2003, “
A Systematic Procedure for Constructing Critical State Models in Three Dimensions
,”
Int. J. Solids Struct.
,
40
, pp.
4379
4397
. 0020-7683
25.
Jenike
,
A. W.
, 1987, “
A Theory of Flow of Particulate Solids in Converging and Diverging Channels Based on a Conical Yield Function
,”
Powder Technol.
,
50
, pp.
229
236
. 0032-5910
26.
Farley
,
R.
, and
Valentin
,
F. H. H.
, 1967, “
Effect of Particle Size Upon the Strength of Powders
,”
Powder Technol.
,
1
, pp.
334
354
. 0032-5910
27.
Hill
,
R.
, 1998,
The Mathematical Theory of Plasticity
,
Clarendon
,
Oxford
.
28.
Drescher
,
A.
, and
de Josselin de Jong
,
G.
, 1972, “
Photoelastic Verification of a Mechanical Model for the Flow of a Granular Material
,”
J. Mech. Phys. Solids
0022-5096,
20
, pp.
337
351
.
29.
Ishihara
,
K.
, and
Towhata
,
I.
, 1983, “
Sand Response to Cyclic Rotation of Principal Stress Directions as Induced by Wave Loads
,”
Soils Found.
,
23
, pp.
11
26
. 0038-0806
30.
Symes
,
M. J. P. R.
,
Gens
,
A.
, and
Hight
,
D. W.
, 1984, “
Undrained Anisotropy and Principal Stress Rotation in Saturated Sand
,”
Geotechnique
,
34
, pp.
11
27
. 0016-8505
31.
Miura
,
K.
,
Miura
,
S.
, and
Toki
,
S.
, 1986, “
Deformation Behaviour of Sand Under Principal Axes Rotation
,”
Soils Found.
,
26
, pp.
36
52
. 0038-0806
32.
Wong
,
R. K. S.
, and
Arthur
,
J. R. F.
, 1986, “
Sand Sheared by Stresses With Cyclic Variations in Directions
,”
Geotechnique
,
36
, pp.
215
226
. 0016-8505
33.
Gutierrez
,
M.
,
Ishihara
,
K.
, and
Towhata
,
I.
, 1991, “
Flow Theory for Sand During Rotation of Principal Stress Directions
,”
Soils Found.
,
31
, pp.
121
132
. 0038-0806
34.
Drucker
,
D. C.
, and
Prager
,
W.
, 1952, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
,
10
, pp.
157
165
. 0033-569X
35.
De Josselin de Jong
,
G.
, 1959, “
Statics and Kinematics of the Failable Zone of a Granular Material
,” Ph.D. thesis, Uitgeverij Waltman, Delft.
36.
De Josselin de Jong
,
G.
, 1977, “
Mathematical Elaboration of the Double-Sliding, Free Rotating Model
,”
Arch. Mech.
0373-2029,
29
, pp.
561
591
.
37.
Spencer
,
A. J. M.
, 1964, “
A Theory of the Kinematics of Ideal Soils Under Plane Strain Conditions
,”
J. Mech. Phys. Solids
,
12
, pp.
337
351
. 0022-5096
38.
Spencer
,
A. J. M.
, 1982, “
Deformation of Ideal Granular Materials
,”
Mechanics of Solids: The Rodney Hill 60th Anniversary Volume
,
H. G.
Hopkins
and
M. J.
Sewell
, eds.,
Pergamon
,
Oxford
, pp.
607
652
.
39.
Mehrabadi
,
M. M.
, and
Cowin
,
S. C.
, 1978, “
Initial Planar Deformation of Dilatant Granular Materials
,”
J. Mech. Phys. Solids
,
26
, pp.
269
284
. 0022-5096
40.
Harris
,
D.
, 1997, “
Modelling Mathematically the Flow of Granular Materials
,”
Mechanics of Granular and Porous Materials
,
N. A.
Fleck
and
A. C. F.
Cocks
, eds.,
Kluwer
,
Dordrecht
, pp.
239
250
.
41.
Harris
,
D.
, 1997, “
Discrete and Continuum Models in the Mechanics of Granular Materials
,”
Powders and Grains 97
,
R. P.
Behringer
and
J. T.
Jenkins
, eds.,
Balkema
,
Rotterdam
.
42.
Harris
,
D.
, and
Grekova
,
E. F.
, 2005, “
A Hyperbolic Well-Posed Model for the Flow of Granular Materials
,”
J. Eng. Math.
,
52
, pp.
107
135
. 0022-0833
43.
Jiang
,
M. J.
,
Harris
,
D.
, and
Yu
,
H. S.
, 2005, “
Kinematic Models for Non-Coaxial Granular Materialism—Part I: Theory
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
29
, pp.
643
661
. 0363-9061
44.
Jiang
,
M. J.
,
Harris
,
D.
, and
Yu
,
H. S.
, 2005, “
Kinematic Models for Non-Coaxial Granular Materials—Part II: Evaluation
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
29
, pp.
663
689
. 0363-9061
45.
Yu
,
H. S.
, and
Yuan
,
X.
, 2006, “
On a Class of Non-Coaxial Plasticity Models for Granular Soils
,”
Proc. R. Soc. London, Ser. A
1364-5021,
462
, pp.
725
748
.
46.
Butterfield
,
R.
, and
Harkness
,
R. M.
, 1972, “
The Kinematics of Mohr-Coulomb Materials
,”
Stress-Strain Behaviour of Soils
,
R. H. G.
Parry
, ed.,
Foulis
,
Henley
, pp.
220
281
.
47.
Spencer
,
A. J. M.
, 1997, “
Remarks on Coaxiality in Fully Developed Gravity Flows of Dry Granular Materials, in: Mechanics of Granular and Porous Materials
,”
Mechanics of Granular and Porous Materials
,
N. A.
Fleck
and
A. C. F.
Cocks
, eds.,
Kluwer
,
Dordrecht
, pp.
227
238
.
48.
Spencer
,
A. J. M.
, and
Bradley
,
N. J.
, 1996, “
Gravity Flow of Granular Materials in Converging Wedges and Cones
,”
Proceedings of the Eighth International Symposium on Continuum Models and Discrete Systems
,
Varna, Bulgaria
, Jun. 11–16, 1995,
K. Z.
Markov
, ed.,
World Scientific
,
Singapore
, pp.
581
590
.
49.
Spencer
,
A. J. M.
, and
Bradley
,
N. J.
, 2002, “
Gravity Flow of Granular Materials in Contracting Cylinders and Tapered Tubes
,”
Int. J. Eng. Sci.
,
40
, pp.
1529
1552
. 0020-7225
50.
Savage
,
J. C.
, and
Lockner
,
D. A.
, 1997, “
A Test of the Double-Shearing Model of Flow for Granular Materials
,”
J. Geophys. Res.
,
102
, pp.
12287
12294
. 0148-0227
51.
Cox
,
A. D.
,
Eason
,
G.
, and
Hopkins
,
H. G.
, 1961, “
Axially Symmetric Plastic Deformations in Soils
,”
Philos. Trans. R. Soc. London, Ser. A
,
254
, pp.
1
45
. 0264-3820
52.
Spencer
,
A. J. M.
, 1983, “
Kinematically Determined Axially Symmetric Deformations of Granular Materials
,”
Mechanics of Granular Media, New Models and Constitutive Relations
,
J. T.
Jenkins
and
M.
Satake
, eds.,
Elsevier
,
Amsterdam
, pp.
245
253
.
53.
Spencer
,
A. J. M.
, 1986, “
Axially Symmetric Flows of Granular Materials
,”
Solid Mechanics Archives
,
11
, pp.
185
198
.
54.
Shield
,
R. T.
, 1955, “
On the Plastic Flow of Metals Under Conditions of Axial Symmetry
,”
Proc. R. Soc. London, Ser. A
,
233
, pp.
267
287
. 0080-4630
55.
Lippmann
,
H.
, 1962, “
Principal Line Theory of Axially-Symmetric Plastic Deformation
,”
J. Mech. Phys. Solids
,
10
, pp.
111
122
. 0022-5096
56.
Lippmann
,
H.
, 1965, “
Statics and Dynamics of Axially-Symmetric Plastic Flow
,”
J. Mech. Phys. Solids
,
13
, pp.
29
39
. 0022-5096
57.
Parker
,
D. F.
, 1990, “
Some Generalized Similarity Solutions for Plastic Flow
,”
Acta Mech.
,
81
, pp.
163
180
. 0001-5970
58.
Spencer
,
A. J. M.
, 1984, “
Plastic Flow Past a Smooth Cone
,”
Acta Mech.
,
54
, pp.
63
74
. 0001-5970
59.
Hill
,
J. M.
, and
Wu
,
Y.-H.
, 1991, “
Kinematically Determined Axially-Symmetric Plastic Flows of Metals and Granular Materials
,”
Q. J. Mech. Appl. Math.
0033-5614,
44
, pp.
451
469
.
60.
Hill
,
J. M.
, and
Katoanga
,
T. L.
, 1997, “
The Velocity Equations for Dilatant Granular Flow and a New Exact Solution
,”
Rev. Mod. Phys.
0034-6861,
48
, pp.
1
8
.
61.
Hill
,
J. M.
, and
Katoanga
,
T. L.
, 1997, “
On a Family of Axially Symmetric Kinematically Determined Plastic Flows
,”
Math. Mech. Solids
1081-2865,
2
, pp.
275
290
.
62.
Australian Standard: Loads on Bulk Solids Containers, 1996, Standards Association of Australia, ISBN 0733707335, AS 3774, p.
23
.
63.
Sture
,
S.
, 1999, “
Constitutive Issues in Soil Liquefaction
,”
Proceedings of the Physics and Mechanics of Soil Liquefaction
,
P. V.
Lade
and
J. A.
Yamamuro
, eds.,
Balkema
,
Rotterdam
, pp.
133
143
.
64.
Perkins
,
S. W.
, 1994, “
Non-Linear Limit Analysis for the Bearing Capacity of Highly Frictional Soils
,”
Proceedings of the Second Congress on Computing in Civil Engineering
, Jun. 4, 1995,
ASCE
,
Atlanta
, Vol.
1
, pp.
629
636
.
65.
Perkins
,
S. W.
, 1995, “
Bearing Capacity of Highly Frictional Material
,”
Geotech. Test. J.
,
18
, pp.
450
462
. 0149-6115
66.
Perkins
,
S. W.
, and
Gui
,
D.
, 1994, “
Mechanical Properties of Lunar Regolith and Their Effect on Bearing Capacity
,”
Computer Methods and Advances in Geomechanics
,
H. J.
Siriwardane
and
M. M.
Zaman
, eds.,
Balkema
,
Rotterdam
, pp.
1521
1526
.
67.
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2003, “
Analytical Stress and Velocity Fields for Gravity Flow of Highly Frictional Granular Materials
,”
Acta Mech.
,
164
, pp.
91
112
. 0001-5970
68.
Cox
,
G. M.
,
McCue
,
S. W.
,
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2005, “
Perturbation Solutions for Flow Through Symmetrical Hoppers With Inserts and Asymmetrical Wedge Hoppers
,”
J. Eng. Math.
,
52
, pp.
63
91
. 0022-0833
69.
McCue
,
S. W.
,
Johnpillai
,
I. K.
, and
Hill
,
J. M.
, 2005, “
New Stress and Velocity Fields for Highly Frictional Granular Materials
,”
IMA J. Appl. Math.
,
70
, pp.
92
118
. 0272-4960
70.
Hill
,
J. M.
, and
Cox
,
G. M.
, 2001, “
An Exact Parametric Solution for Granular Flow in a Converging Wedge
,”
ZAMP
,
52
, pp.
657
668
. 0044-2275
71.
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2003, “
Analytical Solutions for Tapering Quadratic and Cubic Rat-Holes in Highly Frictional Granular Solids
,”
Int. J. Solids Struct.
,
40
, pp.
5923
5948
. 0020-7683
72.
Abramowitz
,
M.
, and
Stegun
,
A.
, 1974,
Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables
,
Dover
,
New York
, pp.
505
506
.
73.
Johnpillai
,
I. K.
,
McCue
,
S. W.
, and
Hill
,
J. M.
, 2005, “
Lie Group Symmetry Analysis for Granular Media Stress Equations
,”
J. Math. Anal. Appl.
,
301
, pp.
135
157
. 0022-247X
74.
Jenike
,
A. W.
, 1964, “
Steady Gravity Flow of Frictional-Cohesive Solids in Converging Channels
,”
ASME J. Appl. Mech.
,
31
, pp.
5
11
. 0021-8936
75.
Jenike
,
A. W.
, 1965, “
Gravity Flow of Frictional-Cohesive Solids: Convergence to Radial Stress Fields
,”
ASME J. Appl. Mech.
0021-8936,
32
, pp.
205
207
.
76.
Johanson
,
J. R.
, 1964, “
Stress and Velocity Fields in the Gravity Flow of Bulk Solids
,”
ASME J. Appl. Mech.
,
31
, pp.
499
506
. 0021-8936
77.
Gremaud
,
P. A.
, 2004, “
Numerical Issues in Plasticity Models for Granular Materials
,”
J. Volcanol. Geotherm. Res.
,
137
, pp.
1
9
. 0377-0273
78.
Cleaver
,
J. A. S.
, and
Nedderman
,
R. M.
, 1993, “
Measurement of Velocity Profiles in Conical Hoppers
,”
Chem. Eng. Sci.
,
48
, pp.
3703
3712
. 0009-2509
79.
Horne
,
R. M.
, and
Nedderman
,
R. M.
, 1978, “
Stress Distribution in Hoppers
,”
Powder Technol.
,
19
, pp.
243
254
. 0032-5910
80.
Moreea
,
S. B. M.
, and
Nedderman
,
R. M.
, 1996, “
Exact Stress and Velocity Distributions in a Cohesionless Material Discharging From a Conical Hopper
,”
Chem. Eng. Sci.
,
51
, pp.
3931
3942
. 0009-2509
81.
Wu
,
Y.-H.
, and
Collinson
,
R.
, 2000, “
Determination of Velocity and Stress Discontinuities in Quasi-Static Granular Flows
,”
ANZIAM J.
,
42
, pp.
C1556
C1579
. 1046-8021
82.
Savage
,
S. B.
, 1965, “
The Mass Flow of Granular Materials Derived From Coupled Velocity-Stress Fields
,”
Br. J. Appl. Phys.
,
16
, pp.
1885
1888
. 0508-3443
83.
Savage
,
S. B.
, 1967, “
Gravity Flow of a Cohesionless Bulk Solid in a Converging Conical Channel
,”
Int. J. Mech. Sci.
,
9
, pp.
651
659
. 0020-7403
84.
Davidson
,
J. F.
, and
Nedderman
,
R. M.
, 1973, “
The Hour-Glass Theory of Hopper Flow
,”
Trans. Inst. Chem. Eng.
,
51
, pp.
29
35
. 0046-9858
85.
Brennen
,
C.
, and
Pearce
,
J. C.
, 1978, “
Granular Material Flow in Two-Dimensional Hoppers
,”
ASME J. Appl. Mech.
,
45
, pp.
43
50
. 0021-8936
86.
Nguyen
,
T. V.
,
Brennen
,
C.
, and
Pearce
,
J. C.
, 1979, “
Gravity Flow of Granular Materials in Conical Hoppers
,”
ASME J. Appl. Mech.
,
46
, pp.
529
535
. 0021-8936
87.
Kaza
,
K. R.
, and
Jackson
,
R.
, 1982, “
The Rate of Discharge of Coarse Granular Material From a Wedge-Shaped Mass Flow Hopper
,”
Powder Technol.
,
33
, pp.
223
237
. 0032-5910
88.
Weir
,
G. J.
, 2005, “
Incompressible Granular Flow From Wedge-Shaped Hoppers
,”
J. Eng. Math.
,
52
, pp.
293
305
. 0022-0833
89.
Prakash
,
J. R.
, and
Rao
,
K. K.
, 1991, “
Steady Compressible Flow of Cohesionless Granular Materials Through a Wedge-Shaped Bunker
,”
J. Fluid Mech.
,
225
, pp.
21
80
. 0022-1120
90.
Choi
,
J.
,
Kudrolli
,
A.
, and
Bazant
,
M. Z.
, 2005, “
Velocity Profile of Granular Flows Inside Silos and Hoppers
,”
J. Phys.: Condens. Matter
,
17
, pp.
S2533
2548
. 0953-8984
91.
Samadani
,
A.
,
Pradhan
,
A.
, and
Kudrolli
,
A.
, 1999, “
Size Segregation of Granular Matter in Silo Discharges
,”
Phys. Rev. E
1063-651X,
60
, pp.
7203
7209
.
92.
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2005, “
Perturbation Solutions for Highly Frictional Granular Media
,”
Proc. R. Soc. London, Ser. A
1364-5021,
461
, pp.
21
42
.
93.
Cox
,
G. M.
, and
Hill
,
J. M.
, 2005, “
Some Exact Velocity Profiles for Granular Flow in Converging Hoppers
,”
ZAMP
,
56
, pp.
92
106
. 0044-2275
94.
Cox
,
G. M.
, and
Hill
,
J. M.
, 2003, “
Some Exact Mathematical Solutions for Granular Stock Piles and Granular Flow in Hoppers
,”
Math. Mech. Solids
1081-2865,
8
, pp.
21
50
.
95.
Drescher
,
A.
, 1991,
Analytical Methods in Bin-Load Analysis
,
Elsevier
,
Amsterdam
.
96.
McCue
,
S. W.
, and
Hill
,
J. M.
, 2005, “
Free Surface Problems for Static Coulomb-Mohr Granular Solids
,”
Math. Mech. Solids
1081-2865,
10
, pp.
651
672
.
97.
Gremaud
,
P. A.
,
Matthews
,
J. V.
, and
Schaeffer
,
D. G.
, 2003, “
Secondary Circulation in Granular Flow Through Nonaxisymmetric Hoppers
,”
SIAM J. Appl. Math.
,
64
, pp.
583
600
. 0036-1399
98.
Gremaud
,
P. A.
,
Matthews
,
J. V.
, and
O’Mally
,
M.
, 2004, “
On the Computation of Steady Hopper Flows II: Von Mises Materials in Various Geometries
,”
J. Comput. Phys.
,
200
, pp.
639
653
. 0021-9991
99.
Gremaud
,
P. A.
,
Matthews
,
J. V.
, and
Schaeffer
,
D. G.
, 2006, “
On the Computation of Steady Hopper Flows III: Model Comparisons
,”
J. Comput. Phys.
,
219
, pp.
443
454
. 0021-9991
100.
Hummel
,
F. H.
, and
Finnan
,
E. J.
, 1920, “
The Distribution of Pressure on Surfaces Supporting a Mass of Granular Material
,”
Minutes of Proceedings of the Institution of Civil Engineers
, Session 1920–1921, Part II, Selected Papers, Vol.
212
, pp.
369
392
.
101.
Smid
,
J.
, and
Novosad
,
J.
, 1981, “
Pressure Distribution Under Heaped Bulk Solids
,”
Inst. Chem. Eng. Symp. Ser.
0307-0492,
63
, p.
D3/V/1
-
12
.
102.
Watson
,
A.
, 1991, “
The Perplexing Puzzle Posed by a Pile of Apples
,”
New Sci.
0262-4079,
1799
, p.
19
.
103.
Watson
,
A.
, 1996, “
Searching for the Sand-Pile Pressure Dip
,”
Science
,
273
, pp.
579
580
. 0036-8075
104.
Trollope
,
D. H.
, and
Burman
,
B. C.
, 1980, “
Physical and Numerical Experiments With Granular Wedges
,”
Geotechnique
,
30
(
2
), pp.
137
157
. 0016-8505
105.
Michalowski
,
R. L.
, and
Park
,
N.
, 2004, “
Admissible Stress Fields and Arching in Piles of Sand
,”
Geotechnique
,
54
(
8
), pp.
529
538
. 0016-8505
106.
Wittmer
,
J. P.
,
Claudin
,
P.
,
Cates
,
M. E.
, and
Bouchaud
,
J.-P.
, 1996, “
An Explanation for the Central Stress Minimum in Sand Piles
,”
Nature (London)
,
382
, pp.
336
338
. 0028-0836
107.
Wittmer
,
J. P.
,
Cates
,
M. E.
and
Claudin
,
P.
, 1997, “
Stress Propagation and Arching in Static Sandpiles
,”
J. Phys. I
1155-4304,
7
, pp.
39
80
.
108.
Cates
,
M. E.
,
Wittmer
,
J. P.
,
Bouchaud
,
J.-P.
, and
Claudin
,
P.
, 1999, “
Jamming and Static Stress Transmission in Granular Materials
,”
Chaos
,
9
(
3
), pp.
511
522
. 1054-1500
109.
Cates
,
M. E.
,
Wittmer
,
J. P.
,
Bouchaud
,
J.-P.
, and
Claudin
,
P.
, 1999, “
Jamming and Static Stress Transmission in Particle Matter
,”
Physica A
,
263
, pp.
354
361
. 0378-4371
110.
Cates
,
M. E.
,
Wittmer
,
J. P.
,
Bouchaud
,
J.-P.
, and
Claudin
,
P.
, 1998, “
Development of Stresses in Cohesionless Poured Sand
,”
Philos. Trans. R. Soc. London, Ser. A
,
356
, pp.
2535
2560
. 0080-4614
111.
Geng
,
F.
,
Longhi
,
E.
,
Behringer
,
R. P.
, and
Howell
,
D. W.
, 2001, “
Memory in Two-Dimensional Heap Experiments
,”
Phys. Rev. E
1063-651X,
64
, p.
060301
.
112.
Baxter
,
J.
,
Tüzün
,
U.
,
Burnell
,
J.
, and
Heyes
,
D. M.
, 1997, “
Granular Dynamics Simulations of Two-Dimensional Heap Formation
,”
Phys. Rev. E
1063-651X,
55
(
3
), pp.
3546
3554
.
113.
Atman
,
A. P. F.
,
Brunet
,
O.
,
Geng
,
J.
,
Reydellet
,
G.
,
Combe
,
G.
,
Claudin
,
P.
,
Behringer
,
R. P.
, and
Clément
,
E.
, 2005, “
Sensitivity of the Stress Response Function to Packing Preparation
,”
J. Phys.: Condens. Matter
,
17
, pp.
S2391
2403
. 0953-8984
114.
Goldenberg
,
C.
,
Atman
,
A. P. F.
,
Claudin
,
P.
,
Combe
,
G.
, and
Goldhirsch
,
I.
, 2006, “
Scale Separation in Granular Packings: Stress Plateaus and Fluctuations
,”
Phys. Rev. Lett.
0031-9007,
96
, p.
168001
.
115.
Gland
,
N.
,
Wang
,
P.
, and
Makse
,
H. A.
, 2006, “
Numerical Study of the Stress Response of Two-Dimensional Dense Granular Packings
,”
Eur. Phys. J. E
,
20
, pp.
179
184
. 1292-8941
116.
Snyder
,
R. E.
, and
Ball
,
R. C.
, 1994, “
Self-Organised Criticality in Computer Models of Settling Powders
,”
Phys. Rev. E
1063-651X,
49
(
1
), pp.
104
109
.
117.
Bagster
,
D. F.
, 1982, “
A Randomised Model of Granular Material in an Ore Heap
,”
Rev. Mod. Phys.
0034-6861,
6
, pp.
1
3
.
118.
Bagster
,
D. F.
, 1989, “
The Development of a Microscopic Model of Granular Material Behaviour in a Heap
,”
Proceedings of the Third International Conference Bulk Materials, Storage, Handling and Transportation
,
Newcastle, Australia
, Jun. 27–29, pp.
24
32
.
119.
Bagster
,
D. F.
, and
Kirk
,
R.
, 1985, “
Computer Generation of a Model to Simulate Granular Material Behaviour
,”
J. Powder Bulk Solids Technol.
0147-698X,
9
, pp.
19
24
.
120.
Liffman
,
K.
,
Nguyen
,
M.
, and
Cleary
,
P.
, 1999, “
Stress in Sandpiles
,”
Proceedings of the Second International Conference on CFD in the Materials and Process Industries
, Dec. 6–8,
CSIRO
,
Melbourne, Australia
, pp.
83
87
.
121.
Vanel
,
L.
,
Howell
,
D.
,
Clark
,
D.
,
Behringer
,
R. P.
, and
Clement
,
E.
, 1999, “
Memories in Sand: Experimental Tests of Construction History on Stress Distributions Under Sandpiles
,”
Phys. Rev. E
1063-651X,
60
, pp.
R5040
R5043
.
122.
Savage
,
S. B.
, 1997, “
Problems in the Statics and Dynamics of Granular Materials
,”
Proceedings of the Powders and Grains ’97
,
R. P.
Behringer
and
J. T.
Jenkins
, eds.,
Balkema
,
Rotterdam
, pp.
185
194
.
123.
Didwania
,
A. K.
,
Cantelaube
,
F.
, and
Goddard
,
J. D.
, 2000, “
Static Multiplicity of Stress States in Granular Heaps
,”
Proc. R. Soc. London, Ser. A
1364-5021,
456
, pp.
2569
2588
.
124.
Hill
,
J. M.
, and
Cox
,
G. M.
, 2000, “
The Force Distribution at the Base of Sand-Piles
,”
Development in Theoretical Geomechanics
,
The John Booker Memorial Symposium
,
D. W.
Smith
and
J. P.
Carter
, pp.
43
61
.
125.
Thamwattana
,
N.
,
Cox
,
G. M.
, and
Hill
,
J. M.
, 2004, “
Stress Distributions in Highly Frictional Granular Heaps
,”
ZAMP
,
55
, pp.
330
356
. 0044-2275
126.
Thamwattana
,
N.
, and
Hill
,
J. M.
, 2004, “
Stress Distributions Within Curved Highly Frictional Granular Stockpiles
,”
Q. J. Mech. Appl. Math.
,
57
, pp.
447
466
. 0033-5614
127.
Jeschar
,
R.
,
Potke
,
W.
,
Petersen
,
V.
, and
Polthier
,
K.
, 1975, “
Blast Furnace Aerodynamics
,”
Proceedings of the Symposium on Blast Furnace Aerodynamics
,
N.
Standish
, ed., Sept. 25–27,
The Australian Institute of Mining & Metallurgy
, Wollongong, pp.
136
147
.
128.
Canmet Energy Technology Centre
, 2004, Investigation of Coals for Blast Furnace Injection, Natural Resources Canada, Jul. 17, 2006, http://www.nrcan.gc.ca/es/etb/cetc/pdfs/investigation_of_coals_for_blast_furnace_injection_e.pdfhttp://www.nrcan.gc.ca/es/etb/cetc/pdfs/investigation_of_coals_for_blast_furnace_injection_e.pdf
129.
Grasselli
,
Y.
,
Herrmann
,
H. J.
,
Oron
,
G.
, and
Zapperi
,
S.
, 2000, “
Effect of Impact Energy on the Shape of Granualr Heaps
,”
Granular Matter
,
2
, pp.
97
100
. 1434-5021
130.
Hill
,
J. M.
, and
Cox
,
G. M.
, 2002, “
On the Problem of the Determination of Force Distributions in Granular Heaps Using Continuum Theory
,”
Q. J. Mech. Appl. Math.
,
55
, pp.
655
668
. 0033-5614
131.
Cantelaube
,
F.
, and
Goddard
,
J. D.
, 1997, “
Elastoplastic Arching in 2D Heaps
,”
Powders and Grains
,
Proceedings of the Third International Conference
, Durham, NC, May 18–23,
R. P.
Behringer
and
J. T.
Jenkins
, eds.,
Balkema
,
Rotterdam
, pp.
231
234
.
132.
Cantelaube
,
F.
,
Didwania
,
A. K.
, and
Goddard
,
J. D.
, 1998, “
Elasto-Plastic Arching in Two Dimensional Granular Heaps
,”
Physics of Dry Granular Media
,
Proceedings of the NATO ASI
, Cargese, France, Sept. 15–26, 1997,
H. J.
Herrmann
,
J. P.
Hovi
, and
S.
Luding
, eds.,
Kluwer
,
Dordrecht
, pp.
123
127
.
133.
Dantion
,
B.
,
Hossfeld
,
R.
, and
McAtee
,
K.
, 2003, “
Converting From Funnel Flow to Mass Flow
,”
Power
,
147
, p.
61
. 0032-5929
134.
Roberts
,
A. W.
, and
Wensrich
,
C. M.
, 2002, “
Flow Dynamics or ‘Quaking’ in Gravity Discharge From Silos
,”
Chem. Eng. Sci.
,
57
, pp.
295
305
. 0009-2509
135.
Jenike
,
A. W.
, 1962, “
Gravity Flow of Bulk Solids
,” Utah Engineering Experiment Station, Bulletin No. 108.
136.
Jenike
,
A. W.
, 1962, “
Gravity Flow of Solids
,”
Trans. Inst. Chem. Eng.
,
40
, pp.
264
271
. 0046-9858
137.
Jenike
,
A. W.
and
Yen
,
B. C.
, 1962, “
Slope Stability in Axial Symmetry
,” Utah Engineering Experimental Station, Bulletin No. 115.
138.
Jenike
,
A. W.
, and
Yen
,
B. C.
, 1963, “
Slope Stability in Axial Symmetry
,”
Proceedings of the Fifth Symposium on Rock Mechanics
, University of Minnesota, May 1962,
Pergamon
,
New York
, pp.
689
711
.
139.
Hill
,
J. M.
, and
Cox
,
G. M.
, 2000, “
Cylindrical Cavities and Classical Rat-Hole Theory Occurring in Bulk Materials
,”
Int. J. Numer. Analyt. Meth. Geomech.
,
24
, pp.
971
990
. 0363-9061
140.
Johanson
,
K.
, 2004, “
Rathole Stability Analysis for Aerated Powder Materials
,”
Powder Technol.
,
141
, pp.
161
170
. 0032-5910
141.
Hill
,
J. M.
, and
Cox
,
G. M.
, 2001, “
Stress Profiles for Tapered Cylindrical Cavities in Granular Media
,”
Int. J. Solids Struct.
,
38
, pp.
3795
3811
. 0020-7683
142.
Spencer
,
A. J. M.
, and
Hill
,
J. M.
, 2001, “
Non-Dilatant Double-Shearing Theory Applied to Granular Funnel-Flow in Hoppers
,”
J. Eng. Math.
,
41
, pp.
55
73
. 0022-0833
143.
Spencer
,
A. J. M.
, and
Bradley
,
N. J.
, 1992, “
Gravity Flow of a Granular Material in Compression Between Vertical Walls and Through a Tapering Vertical Channel
,”
Q. J. Mech. Appl. Math.
,
45
, pp.
733
746
. 0033-5614
144.
Hill
,
J. M.
, and
Cox
,
G. M.
, 2002, “
Rat-Hole Stress Profiles for Shear-Index Granular Materials
,”
Acta Mech.
,
155
, pp.
157
172
. 0001-5970
145.
Kozicki
,
J.
, and
Tejchman
,
J.
, 2005, “
Application of a Cellular Automaton to Simulations of Granular Flows in Silos
,”
Granular Matter
,
7
, pp.
45
54
. 1434-5021
146.
Matchett
,
A. J.
, 2006, “
Stresses in a Bulk Solid in a Cylindrical Silo, Including an Analysis of Ratholes and an Interpretation of Rathole Stability Criteria
,”
Chem. Eng. Sci.
,
61
, pp.
2035
2047
. 0009-2509
147.
Matchett
,
A. J.
, 2006, “
Rotated, Circular Arc Models of Stress in Silos Applied to Core-Flow and Vertical Rat-Holes
,”
Powder Technol.
,
162
, pp.
87
99
. 0032-5910
148.
Enstad
,
G.
, 1975, “
On the Theory of Arching in Mass Flow Hoppers
,”
Chem. Eng. Sci.
,
30
, pp.
1273
1283
. 0009-2509
149.
Li
,
H.
, 1994, “
Mechanics of Arching in a Moving Bed Standpipe With Interstitial Gas Flow
,”
Rev. Mod. Phys.
0034-6861,
78
, pp.
179
187
.
150.
Johanson
,
K.
, and
Barletta
,
D.
, 2004, “
The Influence of Air Counter-Flow Through Powder Materials as a Means of Reducing Cohesive Flow Problems
,”
Part. Part. Syst. Charact.
0934-0866,
21
, pp.
316
325
.
151.
Cox
,
G. M.
,
Hill
,
J. M.
, and
Thamwattana
,
N.
, 2004, “
A Formal Exact Mathematical Solution for a Sloping Rat-Hole in a Highly Frictional Granular Solid
,”
Acta Mech.
,
170
, pp.
127
147
. 0001-5970
You do not currently have access to this content.