Cellulose nanopaper, which consists of a porous network of cellulose nanofibrils (CNFs), exhibits excellent mechanical properties with high strength and toughness. The physical mechanisms, including a realizable reduction of defect size in the nanopaper and facile formation/reformation of hydrogen bonds among CNFs, suggest a bottom-up material design strategy to address the conflict between strength and toughness. A thorough exploration of the rich potential of such a design strategy requires a fundamental understanding of its mechanical behavior. In this review, we supply a comprehensive perspective on advances in cellulose nanopaper mechanics over the most recent two decades from the three aspects of mechanical properties, structure–property relationship and microstructure-based mechanical modeling. We discuss the effects of size, orientation, polymerization degree, and isolate origins of CNFs; density or porosity and humidity of nanopaper; and hemicellulose and lignin on the mechanical properties of cellulose nanopaper. We also discuss the similarities and differences in the microstructure, mechanical properties, and toughening mechanisms between cellulose nanopaper and cellulose nanocrystal (CNC) nanopaper, chitin nanopaper, carbon nanotube (CNT) nanopaper, and graphene nanopaper. Finally, we present the ideas, status quo, and future trends in mechanical modeling of cellulose nanopaper, including atomistic- and microscale-level numerical modeling, and theoretical modeling. This review serves as a modest spur intended to induce scientists to present their valuable contributions and especially to design more advanced cellulose nanopapers and promote the development of their mechanics.

References

1.
Alava
,
M.
, and
Niskanen
,
K.
,
2006
, “
The Physics of Paper
,”
Rep. Prog. Phys.
,
69
(
3
), pp.
669
723
.
2.
Dufresne
,
A.
,
Cavaillé
,
J.-Y.
, and
Vignon
,
M. R.
,
1997
, “
Mechanical Behavior of Sheets Prepared From Sugar Beet Cellulose Microfibrils
,”
J. Appl. Polym. Sci.
,
64
(
6
), pp.
1185
1194
.
3.
Taniguchi
,
T.
, and
Okamura
,
K.
,
1998
, “
New Films Produced From Microfibrillated Natural Fibres
,”
Polym. Int.
,
47
(
3
), pp.
291
294
.
4.
Henriksson
,
M.
,
Berglund
,
L. A.
,
Isaksson
,
P.
,
Lindström
,
T.
, and
Nishino
,
T.
,
2008
, “
Cellulose Nanopaper Structures of High Toughness
,”
Biomacromolecules
,
9
(
6
), pp.
1579
1585
.
5.
Zhu
,
H.
,
Zhu
,
S.
,
Jia
,
Z.
,
Parvinian
,
S.
,
Li
,
Y.
,
Vaaland
,
O.
,
Hu
,
L.
, and
Li
,
T.
,
2015
, “
Anomalous Scaling Law of Strength and Toughness of Cellulose Nanopaper
,”
Proc. Natl. Acad. Sci. U. S.
,
112
(
29
), pp.
8971
8976
.
6.
Wang
,
S.
,
Li
,
T.
,
Chen
,
C.
,
Kong
,
W.
,
Zhu
,
S.
,
Dai
,
J.
,
Diaz
,
A. J.
,
Hitz
,
E.
,
Solares
,
S. D.
,
Li
,
T.
, and
Hu
,
L.
,
2018
, “
Transparent, Anisotropic Biofilm With Aligned Bacterial Cellulose Nanofibers
,”
Adv. Funct. Mater.
,
28
(
24
), p.
1707491
.
7.
Revol
,
J. F.
,
Bradford
,
H.
,
Giasson
,
J.
,
Marchessault
,
R. H.
, and
Gray
,
D. G.
,
1992
, “
Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension
,”
Int. J. Biol. Macromol.
,
14
(
3
), pp.
170
172
.
8.
Yoshiharu
,
N.
,
Shigenori
,
K.
,
Masahisa
,
W.
, and
Takeshi
,
O.
,
1997
, “
Cellulose Microcrystal Film of High Uniaxial Orientation
,”
Macromolecules
,
30
(
20
), pp.
6395
6397
.
9.
Roman
,
M.
, and
Gray
,
D. G.
,
2005
, “
Parabolic Focal Conics in Self-Assembled Solid Films of Cellulose Nanocrystals
,”
Langmuir
,
21
(
12
), pp.
5555
5561
.
10.
Hoeger
,
I.
,
Rojas
,
O. J.
,
Efimenko
,
K.
,
Velev
,
O. D.
, and
Kelley
,
S. S.
,
2011
, “
Ultrathin Film Coatings of Aligned Cellulose Nanocrystals From a Convective-Shear Assembly System and Their Surface Mechanical Properties
,”
Soft Matter
,
7
(
5
), pp.
1957
1967
.
11.
Chowdhury
,
R. A.
,
Peng
,
S. X.
, and
Youngblood
,
J.
,
2017
, “
Improved Order Parameter (Alignment) Determination in Cellulose Nanocrystal (CNC) Films by a Simple Optical Birefringence Method
,”
Cellulose
,
24
(
5
), pp.
1957
1970
.
12.
Yusof
,
N. L. B. M.
,
Lim
,
L. Y.
, and
Khor
,
E.
,
2004
, “
Flexible Chitin Films: Structural Studies
,”
Carbohydr. Res.
,
339
(
16
), pp.
2701
2711
.
13.
Duan
,
B.
,
Chang
,
C.
,
Ding
,
B.
,
Cai
,
J.
,
Xu
,
M.
,
Feng
,
S.
,
Ren
,
J.
,
Shi
,
X.
,
Du
,
Y.
, and
Zhang
,
L.
,
2013
, “
High Strength Films With Gas-Barrier Fabricated From Chitin Solution Dissolved at Low Temperature
,”
J. Mater. Chem. A
,
1
(
5
), pp.
1867
1874
.
14.
Hassanzadeh
,
P.
,
Sun
,
W.
,
de Silva
,
J. P.
,
Jin
,
J.
,
Makhnejia
,
K.
,
Cross
,
G. L.
, and
Rolandi
,
M.
,
2014
, “
Mechanical Properties of Self-Assembled Chitin Nanofiber Networks
,”
J. Mater. Chem. B
,
2
(
17
), pp.
2461
2466
.
15.
Jin
,
J.
,
Lee
,
D.
,
Im
,
H. G.
,
Han
,
Y. C.
,
Jeong
,
E. G.
,
Rolandi
,
M.
,
Choi
,
K. C.
, and
Bae
,
B. S.
,
2016
, “
Chitin Nanofiber Transparent Paper for Flexible Green Electronics
,”
Adv. Mater.
,
28
(
26
), pp.
5169
5175
.
16.
Huang
,
J.
,
Zhong
,
Y.
,
Zhang
,
L.
, and
Cai
,
J.
,
2017
, “
Extremely Strong and Transparent Chitin Films: A High-Efficiency, Energy-Saving, and “Green” Route Using an Aqueous KOH/Urea Solution
,”
Adv. Funct. Mater.
,
27
(
26
), p.
1701100
.
17.
Liu
,
J.
,
Rinzler
,
A. G.
,
Dai
,
H.
,
Hafner
,
J. H.
,
Bradley
,
R. K.
,
Boul
,
P. J.
,
Lu
,
A.
,
Iverson
,
T.
,
Shelimov
,
K.
,
Huffman
,
C. B.
,
Rodriguez-Macias
,
F.
,
Shon
,
Y. S.
,
Lee
,
T. R.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
,
1998
, “
Fullerene Pipes
,”
Science
,
280
(
5367
), pp.
1253
1256
.
18.
Rinzler
,
A. G.
,
Liu
,
J.
,
Dai
,
H.
,
Nikolaev
,
P.
,
Huffman
,
C. B.
,
Rodriguez-Macias
,
F. J.
,
Boul
,
P. J.
,
Lu
,
A. H.
,
Heymann
,
D.
,
Colbert
,
D. T.
,
Lee
,
R. S.
,
Fischer
,
J. E.
,
Rao
,
A. M.
,
Eklund
,
P. C.
, and
Smalley
,
R. E.
,
1998
, “
Large-Scale Purification of Single-Wall Carbon Nanotubes: Process, Product, and Characterization
,”
Appl. Phys. A: Mater. Sci. Process.
,
67
(
1
), pp.
29
37
.
19.
Endo
,
M.
,
Muramatsu
,
H.
,
Hayashi
,
T.
,
Kim
,
Y. A.
,
Terrones
,
M.
, and
Dresselhaus
,
M. S.
,
2005
, “
‘Buckypaper’ From Coaxial Nanotubes
,”
Nature
,
433
(
7025
), p.
476
.
20.
Feng
,
C.
,
Liu
,
K.
,
Wu
,
J. S.
,
Liu
,
L.
,
Cheng
,
J. S.
,
Zhang
,
Y.
,
Sun
,
Y.
,
Li
,
Q.
,
Fan
,
S.
, and
Jiang
,
K.
,
2010
, “
Flexible, Stretchable, Transparent Conducting Films Made From Superaligned Carbon Nanotubes
,”
Adv. Funct. Mater.
,
20
(
6
), pp.
885
891
.
21.
Liu
,
P.
,
Tan
,
Y. F.
,
Hu
,
D. C.
,
Jewell
,
D.
, and
Duong
,
H. M.
,
2016
, “
Multi-Property Enhancement of Aligned Carbon Nanotube Thin Films From Floating Catalyst Method
,”
Mater. Des.
,
108
, pp.
754
760
.
22.
Dikin
,
D. A.
,
Stankovich
,
S.
,
Zimney
,
E. J.
,
Piner
,
R. D.
,
Dommett
,
G. H.
,
Evmenenko
,
G.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2007
, “
Preparation and Characterization of Graphene Oxide Paper
,”
Nature
,
448
(
7152
), pp.
457
460
.
23.
Chen
,
H.
,
Müller
,
M. B.
,
Gilmore
,
K. J.
,
Wallace
,
G. G.
, and
Li
,
D.
,
2008
, “
Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper
,”
Adv. Mater.
,
20
(
18
), pp.
3557
3561
.
24.
Huang
,
W.
,
Ouyang
,
X.
, and
Lee
,
L. J.
,
2012
, “
High-Performance Nanopapers Based on Benzenesulfonic Functionalized Graphenes
,”
ACS Nano
,
6
(
11
), pp.
10178
10185
.
25.
Zhang
,
M.
,
Wang
,
Y.
,
Huang
,
L.
,
Xu
,
Z.
,
Li
,
C.
, and
Shi
,
G.
,
2015
, “
Multifunctional Pristine Chemically Modified Graphene Films as Strong as Stainless Steel
,”
Adv. Mater.
,
27
(
42
), pp.
6708
6713
.
26.
Wu
,
M.
,
Chen
,
J.
,
Wen
,
Y.
,
Chen
,
H.
,
Li
,
Y.
,
Li
,
C.
, and
Shi
,
G.
,
2018
, “
Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films
,”
ACS Appl. Mater. Interfaces
,
10
(
6
), pp.
5812
5818
.
27.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S. V.
,
Jiang
,
D. A.
,
Zhang
,
Y.
,
Dubonos
,
S. V.
,
Grigorieva
,
I. V.
, and
Firsov
,
A. A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
28.
Nogi
,
M.
,
Iwamoto
,
S.
,
Nakagaito
,
A. N.
, and
Yano
,
H.
,
2009
, “
Optically Transparent Nanofiber Paper
,”
Adv. Mater.
,
21
(
16
), pp.
1595
1598
.
29.
Fukuzumi
,
H.
,
Saito
,
T.
, and
Isogai
,
A.
,
2013
, “
Influence of TEMPO-Oxidized Cellulose Nanofibril Length on Film Properties
,”
Carbohydr. Polym.
,
93
(
1
), pp.
172
177
.
30.
Nogi
,
M.
,
Kim
,
C.
,
Sugahara
,
T.
,
Inui
,
T.
,
Takahashi
,
T.
, and
Suganuma
,
K.
,
2013
, “
High Thermal Stability of Optical Transparency in Cellulose Nanofiber Paper
,”
Appl. Phys. Lett.
,
102
(
18
), p.
181911
.
31.
Hoeng
,
F.
,
Denneulin
,
A.
, and
Bras
,
J.
,
2016
, “
Use of Nanocellulose in Printed Electronics: A Review
,”
Nanoscale
,
8
(
27
), pp.
13131
13154
.
32.
Sheng
,
J.
,
Tong
,
S.
,
He
,
Z.
, and
Yang
,
R.
,
2017
, “
Recent Developments of Cellulose Materials for Lithium-Ion Battery Separators
,”
Cellulose
,
24
(
10
), pp.
4103
4122
.
33.
Jung
,
Y. H.
,
Chang
,
T. H.
,
Zhang
,
H.
,
Yao
,
C.
,
Zheng
,
Q.
,
Yang
,
V. W.
,
Mi
,
H.
,
Kim
,
M.
,
Cho
,
S. J.
,
Park
,
D. W.
,
Jiang
,
H.
,
Lee
,
J.
,
Qiu
,
Y.
,
Zhou
,
W.
,
Cai
,
Z.
,
Gong
,
S.
, and
Ma
,
Z.
,
2015
, “
High-Performance Green Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper
,”
Nature Commun.
,
6
, p.
7170
.
34.
Olsson
,
R. T.
,
Azizi Samir
,
M. A. S.
,
Salazar-Alvarez
,
G.
,
Belova
,
L.
,
Ström
,
V.
,
Berglund
,
L. A.
,
Ikkala
,
O.
,
Nogués
,
J.
, and
Gedde
,
U. W.
,
2010
, “
Making Flexible Magnetic Aerogels and Stiff Magnetic Nanopaper Using Cellulose Nanofibrils as Templates
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
584
588
.
35.
Nyström
,
G.
,
Razaq
,
A.
,
Strømme
,
M.
,
Nyholm
,
L.
, and
Mihranyan
,
A.
,
2009
, “
Ultrafast All-Polymer Paper-Based Batteries
,”
Nano Lett.
,
9
(
10
), pp.
3635
3639
.
36.
Fujisaki
,
Y.
,
Koga
,
H.
,
Nakajima
,
Y.
,
Nakata
,
M.
,
Tsuji
,
H.
,
Yamamoto
,
T.
,
Kurita
,
T.
,
Nogi
,
M.
, and
Shimidzu
,
N.
,
2014
, “
Transparent Nanopaper-Based Flexible Organic Thin-Film Transistor Array
,”
Adv. Funct. Mater.
,
24
(
12
), pp.
1657
1663
.
37.
Huang
,
J.
,
Zhu
,
H.
,
Chen
,
Y.
,
Preston
,
C.
,
Rohrbach
,
K.
,
Cumings
,
J.
, and
Hu
,
L.
,
2013
, “
Highly Transparent and Flexible Nanopaper Transistors
,”
ACS Nano
,
7
(
3
), pp.
2106
2113
.
38.
Nogi
,
M.
, and
Yano
,
H.
,
2008
, “
Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry
,”
Adv. Mater.
,
20
(
10
), pp.
1849
1852
.
39.
Okahisa
,
Y.
,
Yoshida
,
A.
,
Miyaguchi
,
S.
, and
Yano
,
H.
,
2009
, “
Optically Transparent Wood–Cellulose Nanocomposite as a Base Substrate for Flexible Organic Light-Emitting Diode Displays
,”
Compos. Sci. Technol.
,
69
(
11–12
), pp.
1958
1961
.
40.
Zhang
,
W.
,
Zhang
,
X.
,
Lu
,
C.
,
Wang
,
Y.
, and
Deng
,
Y.
,
2012
, “
Flexible and Transparent Paper-Based Ionic Diode Fabricated From Oppositely Charged Microfibrillated Cellulose
,”
J. Phys. Chem. C
,
116
(
16
), pp.
9227
9234
.
41.
Mautner
,
A.
,
Lee
,
K. Y.
,
Lahtinen
,
P.
,
Hakalahti
,
M.
,
Tammelin
,
T.
,
Li
,
K.
, and
Bismarck
,
A.
,
2014
, “
Nanopapers for Organic Solvent Nanofiltration
,”
Chem. Commun.
,
50
(
43
), pp.
5778
5781
.
42.
Mautner
,
A.
,
Lee
,
K. Y.
,
Tammelin
,
T.
,
Mathew
,
A. P.
,
Nedoma
,
A. J.
,
Li
,
K.
, and
Bismarck
,
A.
,
2015
, “
Cellulose Nanopapers as Tight Aqueous Ultra-Filtration Membranes
,”
React. Funct. Polym.
,
86
, pp.
209
214
.
43.
Sehaqui
,
H.
,
Liu
,
A.
,
Zhou
,
Q.
, and
Berglund
,
L. A.
,
2010
, “
Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures
,”
Biomacromolecules
,
11
(
9
), pp.
2195
2198
.
44.
Zhang
,
L.
,
Batchelor
,
W.
,
Varanasi
,
S.
,
Tsuzuki
,
T.
, and
Wang
,
X.
,
2012
, “
Effect of Cellulose Nanofiber Dimensions on Sheet Forming Through Filtration
,”
Cellulose
,
19
(
2
), pp.
561
574
.
45.
Varanasi
,
S.
, and
Batchelor
,
W. J.
,
2013
, “
Rapid Preparation of Cellulose Nanofibre Sheet
,”
Cellulose
,
20
(
1
), pp.
211
215
.
46.
Sehaqui
,
H.
,
Ezekiel Mushi
,
N.
,
Morimune
,
S.
,
Salajkova
,
M.
,
Nishino
,
T.
, and
Berglund
,
L. A.
,
2012
, “
Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing
,”
ACS Appl. Mater. Interfaces
,
4
(
2
), pp.
1043
1049
.
47.
Baez
,
C.
,
Considine
,
J.
, and
Rowlands
,
R.
,
2014
, “
Influence of Drying Restraint on Physical and Mechanical Properties of Nanofibrillated Cellulose Films
,”
Cellulose
,
21
(
1
), pp.
347
356
.
48.
Zhu
,
H.
,
Fang
,
Z.
,
Preston
,
C.
,
Li
,
Y.
, and
Hu
,
L.
,
2014
, “
Transparent Paper: Fabrications, Properties, and Device Applications
,”
Energy Environ. Sci.
,
7
(
1
), pp.
269
287
.
49.
Li
,
S.
, and
Lee
,
P. S.
,
2017
, “
Development and Applications of Transparent Conductive Nanocellulose Paper
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
620
633
.
50.
Benítez
,
A. J.
, and
Walther
,
A.
,
2017
, “
Cellulose Nanofibril Nanopapers and Bioinspired Nanocomposites: A Review to Understand the Mechanical Property Space
,”
J. Mater. Chem. A
,
5
(
31
), pp.
16003
16024
.
51.
Moon
,
R. J.
,
Martini
,
A.
,
Nairn
,
J.
,
Simonsen
,
J.
, and
Youngblood
,
J.
,
2011
, “
Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites
,”
Chem. Soc. Rev.
,
40
(
7
), pp.
3941
3994
.
52.
Klemm
,
D.
,
Kramer
,
F.
,
Moritz
,
S.
,
Lindström
,
T.
,
Ankerfors
,
M.
,
Gray
,
D.
, and
Dorris
,
A.
,
2011
, “
Nanocelluloses: A New Family of Nature-Based Materials
,”
Angew. Chem. Int. Ed.
,
50
(
24
), pp.
5438
5466
.
53.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature's Hierarchical Materials
,”
Prog. Mater. Sci.
,
52
(
8
), pp.
1263
1334
.
54.
Azizi Samir
,
M. A. S.
,
Alloin
,
F.
, and
Dufresne
,
A.
,
2005
, “
Review of Recent Research Into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field
,”
Biomacromolecules
,
6
(
2
), pp.
612
626
.
55.
Turbak
,
A. F.
,
Snyder
,
F. W.
, and
Sandberg
,
K. R.
,
1983
, “
Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential
,”
J. Appl. Polym. Sci.: Appl. Polym. Symp.
,
37
, pp.
815
827
.
56.
Saito
,
T.
,
Kimura
,
S.
,
Nishiyama
,
Y.
, and
Isogai
,
A.
,
2007
, “
Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose
,”
Biomacromolecules
,
8
(
8
), pp.
2485
2491
.
57.
Isogai
,
A.
,
Saito
,
T.
, and
Fukuzumi
,
H.
,
2011
, “
TEMPO-Oxidized Cellulose Nanofibers
,”
Nanoscale
,
3
(
1
), pp.
71
85
.
58.
Khalil
,
H. A.
,
Davoudpour
,
Y.
,
Islam
,
M. N.
,
Mustapha
,
A.
,
Sudesh
,
K.
,
Dungani
,
R.
, and
Jawaid
,
M.
,
2014
, “
Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review
,”
Carbohydr. Polym.
,
99
, pp.
649
665
.
59.
Keshk
,
S. M. A. S.
,
2014
, “
Bacterial Cellulose Production and Its Industrial Applications
,”
J. Bioprocess. Biotech.
,
4
(
2
), p.
1000150
.
60.
Šturcová
,
A.
,
Davies
,
G. R.
, and
Eichhorn
,
S. J.
,
2005
, “
Elastic Modulus and Stress-Transfer Properties of Tunicate Cellulose Whiskers
,”
Biomacromolecules
,
6
(
2
), pp.
1055
1061
.
61.
Guhados
,
G.
,
Wan
,
W.
, and
Hutter
,
J. L.
,
2005
, “
Measurement of the Elastic Modulus of Single Bacterial Cellulose Fibers Using Atomic Force Microscopy
,”
Langmuir
,
21
(
14
), pp.
6642
6646
.
62.
Rusli
,
R.
, and
Eichhorn
,
S. J.
,
2008
, “
Determination of the Stiffness of Cellulose Nanowhiskers and the Fiber-Matrix Interface in a Nanocomposite Using Raman Spectroscopy
,”
Appl. Phys. Lett.
,
93
(
3
), p.
033111
.
63.
Cheng
,
Q.
, and
Wang
,
S.
,
2008
, “
A Method for Testing the Elastic Modulus of Single Cellulose Fibrils Via Atomic Force Microscopy
,”
Compos. Part A: Appl. Sci. Manuf.
,
39
(
12
), pp.
1838
1843
.
64.
Iwamoto
,
S.
,
Kai
,
W.
,
Isogai
,
A.
, and
Iwata
,
T.
,
2009
, “
Elastic Modulus of Single Cellulose Microfibrils From Tunicate Measured by Atomic Force Microscopy
,”
Biomacromolecules
,
10
(
9
), pp.
2571
2576
.
65.
Tanpichai
,
S.
,
Quero
,
F.
,
Nogi
,
M.
,
Yano
,
H.
,
Young
,
R. J.
,
Lindström
,
T.
,
Sampson
,
W. W.
, and
Eichhorn
,
S. J.
,
2012
, “
Effective Young's Modulus of Bacterial and Microfibrillated Cellulose Fibrils in Fibrous Networks
,”
Biomacromolecules
,
13
(
5
), pp.
1340
1349
.
66.
Saito
,
T.
,
Kuramae
,
R.
,
Wohlert
,
J.
,
Berglund
,
L. A.
, and
Isogai
,
A.
,
2013
, “
An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed Via Sonication-Induced Fragmentation
,”
Biomacromolecules
,
14
(
1
), pp.
248
253
.
67.
Lee
,
H. R.
,
Kim
,
K.
,
Mun
,
S. C.
,
Chang
,
Y. K.
, and
Choi
,
S. Q.
,
2018
, “
A New Method to Produce Cellulose Nanofibrils From Microalgae and the Measurement of Their Mechanical Strength
,”
Carbohydr. Polym.
,
180
, pp.
276
285
.
68.
Iwamoto
,
S.
,
Nakagaito
,
A. N.
, and
Yano
,
H.
,
2007
, “
Nano-Fibrillation of Pulp Fibers for the Processing of Transparent Nanocomposites
,”
Appl. Phys. A
,
89
(
2
), pp.
461
466
.
69.
Karande
,
V. S.
,
Bharimalla
,
A. K.
,
Hadge
,
G. B.
,
Mhaske
,
S. T.
, and
Vigneshwaran
,
N.
,
2011
, “
Nanofibrillation of Cotton Fibers by Disc Refiner and Its Characterization
,”
Fibers Polym.
,
12
(
3
), pp.
399
404
.
70.
Wang
,
S.
, and
Cheng
,
Q.
,
2009
, “
A Novel Process to Isolate Fibrils From Cellulose Fibers by High-Intensity Ultrasonication—Part 1: Process Optimization
,”
J. Appl. Polym. Sci.
,
113
(
2
), pp.
1270
1275
.
71.
Stelte
,
W.
, and
Sanadi
,
A. R.
,
2009
, “
Preparation and Characterization of Cellulose Nanofibers From Two Commercial Hardwood and Softwood Pulps
,”
Ind. Eng. Chem. Res.
,
48
(
24
), pp.
11211
11219
.
72.
Kose
,
R.
,
Mitani
,
I.
,
Kasai
,
W.
, and
Kondo
,
T.
,
2011
, “
‘Nanocellulose’” as a Single Nanofiber Prepared From Pellicle Secreted by Gluconacetobacter xylinus Using Aqueous Counter Collision
,”
Biomacromolecules
,
12
(
3
), pp.
716
720
.
73.
Siqueira
,
G.
,
Tapin-Lingua
,
S.
,
Bras
,
J.
,
da Silva Perez
,
D.
, and
Dufresne
,
A.
,
2010
, “
Morphological Investigation of Nanoparticles Obtained From Combined Mechanical Shearing, and Enzymatic and Acid Hydrolysis of Sisal Fibers
,”
Cellulose
,
17
(
6
), pp.
1147
1158
.
74.
Qing
,
Y.
,
Sabo
,
R.
,
Zhu
,
J. Y.
,
Agarwal
,
U.
,
Cai
,
Z.
, and
Wu
,
Y.
,
2013
, “
A Comparative Study of Cellulose Nanofibrils Disintegrated Via Multiple Processing Approaches
,”
Carbohydr. Polym.
,
97
(
1
), pp.
226
234
.
75.
Shinoda
,
R.
,
Saito
,
T.
,
Okita
,
Y.
, and
Isogai
,
A.
,
2012
, “
Relationship Between Length and Degree of Polymerization of TEMPO-Oxidized Cellulose Nanofibrils
,”
Biomacromolecules
,
13
(
3
), pp.
842
849
.
76.
Nechyporchuk
,
O.
,
Pignon
,
F.
, and
Belgacem
,
M. N.
,
2015
, “
Morphological Properties of Nanofibrillated Cellulose Produced Using Wet Grinding as an Ultimate Fibrillation Process
,”
J. Mater. Sci.
,
50
(
2
), pp.
531
541
.
77.
Alemdar
,
A.
, and
Sain
,
M.
,
2008
, “
Biocomposites From Wheat Straw Nanofibers: Morphology, Thermal and Mechanical Properties
,”
Compos. Sci. Technol.
,
68
(
2
), pp.
557
565
.
78.
Chen
,
W.
,
Yu
,
H.
,
Liu
,
Y.
,
Chen
,
P.
,
Zhang
,
M.
, and
Hai
,
Y.
,
2011
, “
Individualization of Cellulose Nanofibers From Wood Using High-Intensity Ultrasonication Combined With Chemical Pretreatments
,”
Carbohydr. Polym.
,
83
(
4
), pp.
1804
1811
.
79.
Johar
,
N.
,
Ahmad
,
I.
, and
Dufresne
,
A.
,
2012
, “
Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals From Rice Husk
,”
Ind. Crops Prod.
,
37
(
1
), pp.
93
99
.
80.
Henriksson
,
M.
,
Henriksson
,
G.
,
Berglund
,
L. A.
, and
Lindström
,
T.
,
2007
, “
An Environmentally Friendly Method for Enzyme-Assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers
,”
Eur. Polym. J.
,
43
(
8
), pp.
3434
3441
.
81.
Deepa
,
B.
,
Abraham
,
E.
,
Cherian
,
B. M.
,
Bismarck
,
A.
,
Blaker
,
J. J.
,
Pothan
,
L. A.
,
Leao
,
A. L.
,
Souza
,
S. F.
, and
Kottaisamy
,
M.
,
2011
, “
Structure, Morphology and Thermal Characteristics of Banana Nano Fibers Obtained by Steam Explosion
,”
Bioresour. Technol.
,
102
(
2
), pp.
1988
1997
.
82.
Alemdar
,
A.
, and
Sain
,
M.
,
2008
, “
Isolation and Characterization of Nanofibers From Agricultural Residues–Wheat Straw and Soy Hulls
,”
Bioresour. Technol.
,
99
(
6
), pp.
1664
1671
.
83.
Lee
,
K. Y.
,
Aitomäki
,
Y.
,
Berglund
,
L. A.
,
Oksman
,
K.
, and
Bismarck
,
A.
,
2014
, “
On the Use of Nanocellulose as Reinforcement on Polymer Matrix Composites
,”
Compos. Sci. Technol.
,
105
, pp.
15
27
.
84.
Ray
,
D.
, and
Sain
,
S.
,
2016
, “
In Situ Processing of Cellulose Nanocomposites
,”
Compos. Part A: Appl. Sci. Manuf.
,
83
, pp.
19
37
.
85.
Kargarzadeh
,
H.
,
Mariano
,
M.
,
Huang
,
J.
,
Lin
,
N.
,
Ahmad
,
I.
,
Dufresne
,
A.
, and
Thomas
,
S.
,
2017
, “
Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review
,”
Polymers
,
132
, pp.
368
393
.
86.
Koga
,
H.
,
Tokunaga
,
E.
,
Hidaka
,
M.
,
Umemura
,
Y.
,
Saito
,
T.
,
Isogai
,
A.
, and
Kitaoka
,
T.
,
2010
, “
Topochemical Synthesis and Catalysis of Metal Nanoparticles Exposed on Crystalline Cellulose Nanofibers
,”
Chem. Commun.
,
46
(
45
), pp.
8567
8569
.
87.
Yano
,
H.
, and
Nakahara
,
S.
,
2004
, “
Bio-Composites Produced From Plant Microfiber Bundles With a Nanometer Unit Web-Like Network
,”
J. Mater. Sci.
,
39
(
5
), pp.
1635
1638
.
88.
Henriksson
,
M.
, and
Berglund
,
L. A.
,
2007
, “
Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde
,”
J. Appl. Polym. Sci.
,
106
(
4
), pp.
2817
2824
.
89.
Syverud
,
K.
, and
Stenius
,
P.
,
2009
, “
Strength and Barrier Properties of MFC Films
,”
Cellulose
,
16
(
1
), pp.
75
85
.
90.
Sehaqui
,
H.
,
Zhou
,
Q.
,
Ikkala
,
O.
, and
Berglund
,
L. A.
,
2011
, “
Strong and Tough Cellulose Nanopaper With High Specific Surface Area and Porosity
,”
Biomacromolecules
,
12
(
10
), pp.
3638
3644
.
91.
Parit
,
M.
,
Aksoy
,
B.
, and
Jiang
,
Z.
,
2018
, “
Towards Standardization of Laboratory Preparation Procedure for Uniform Cellulose Nanopapers
,”
Cellulose
,
25
(
5
), pp.
2915
2924
.
92.
Zhu
,
M.
,
Wang
,
Y.
,
Zhu
,
S.
,
Xu
,
L.
,
Jia
,
C.
,
Dai
,
J.
,
Song
,
J.
,
Yao
,
Y.
,
Wang
,
Y.
,
Li
,
Y.
,
Henderson
,
D.
,
Luo
,
W.
,
Li
,
H.
,
Minus
,
M. L.
,
Li
,
T.
, and
Hu
,
L.
,
2017
, “
Anisotropic, Transparent Films With Aligned Cellulose Nanofibers
,”
Adv. Mater.
,
29
(
21
), p.
1606284
.
93.
Jiang
,
F.
,
Li
,
T.
,
Li
,
Y.
,
Zhang
,
Y.
,
Gong
,
A.
,
Dai
,
J.
,
Hitz
,
E.
,
Luo
,
W.
, and
Hu
,
L.
,
2018
, “
Wood-Based Nanotechnologies Toward Sustainability
,”
Adv. Mater.
,
30
(
1
), p.
1703453
.
94.
Meng
,
Q.
,
Li
,
B.
,
Li
,
T.
, and
Feng
,
X. Q.
,
2018
, “
Effects of Nanofiber Orientations on the Fracture Toughness of Cellulose Nanopaper
,”
Eng. Fract. Mech.
,
194
, pp.
350
361
.
95.
Mao
,
R.
,
Meng
,
N.
,
Tu
,
W.
, and
Peijs
,
T.
,
2017
, “
Toughening Mechanisms in Cellulose Nanopaper: The Contribution of Amorphous Regions
,”
Cellulose
,
24
(
11
), pp.
4627
4639
.
96.
Salajkova
,
M.
,
Valentini
,
L.
,
Zhou
,
Q.
, and
Berglund
,
L. A.
,
2013
, “
Tough Nanopaper Structures Based on Cellulose Nanofibers and Carbon Nanotubes
,”
Compos. Sci. Technol.
,
87
, pp.
103
110
.
97.
Sinko
,
R.
, and
Keten
,
S.
,
2015
, “
Traction–Separation Laws and Stick–Slip Shear Phenomenon of Interfaces Between Cellulose Nanocrystals
,”
J. Mech. Phys. Solids
,
78
, pp.
526
539
.
98.
Meng
,
Q.
,
Li
,
B.
,
Li
,
T.
, and
Feng
,
X. Q.
,
2017
, “
A Multiscale Crack-Bridging Model of Cellulose Nanopaper
,”
J. Mech. Phys. Solids
,
103
, pp.
22
39
.
99.
Yousefi
,
H.
,
Faezipour
,
M.
,
Hedjazi
,
S.
,
Mousavi
,
M. M.
,
Azusa
,
Y.
, and
Heidari
,
A. H.
,
2013
, “
Comparative Study of Paper and Nanopaper Properties Prepared From Bacterial Cellulose Nanofibers and Fibers/Ground Cellulose Nanofibers of Canola Straw
,”
Ind. Crops Prod.
,
43
, pp.
732
737
.
100.
Kumar
,
V.
,
Bollström
,
R.
,
Yang
,
A.
,
Chen
,
Q.
,
Chen
,
G.
,
Salminen
,
P.
,
Bousfield
,
D.
, and
Toivakka
,
M.
,
2014
, “
Comparison of Nano-and Microfibrillated Cellulose Films
,”
Cellulose
,
21
(
5
), pp.
3443
3456
.
101.
Mtibe
,
A.
,
Linganiso
,
L. Z.
,
Mathew
,
A. P.
,
Oksman
,
K.
,
John
,
M. J.
, and
Anandjiwala
,
R. D.
,
2015
, “
A Comparative Study on Properties of Micro and Nanopapers Produced From Cellulose and Cellulose Nanofibers
,”
Carbohydr. Polym.
,
118
, pp.
1
8
.
102.
Mao
,
R.
,
Goutianos
,
S.
,
Tu
,
W.
,
Meng
,
N.
,
Yang
,
G.
,
Berglund
,
L. A.
, and
Peijs
,
T.
,
2017
, “
Comparison of Fracture Properties of Cellulose Nanopaper, Printing Paper and Buckypaper
,”
J. Mater. Sci.
,
52
(
16
), pp.
9508
9519
.
103.
González
,
I.
,
Alcalà
,
M.
,
Chinga-Carrasco
,
G.
,
Vilaseca
,
F.
,
Boufi
,
S.
, and
Mutjé
,
P.
,
2014
, “
From Paper to Nanopaper: Evolution of Mechanical and Physical Properties
,”
Cellulose
,
21
(
4
), pp.
2599
2609
.
104.
Sehaqui
,
H.
,
Allais
,
M.
,
Zhou
,
Q.
, and
Berglund
,
L. A.
,
2011
, “
Wood Cellulose Biocomposites With Fibrous Structures at Micro- and Nanoscale
,”
Compos. Sci. Technol.
,
71
(
3
), pp.
382
387
.
105.
Fang
,
Z.
,
Zhu
,
H.
,
Preston
,
C.
,
Han
,
X.
,
Li
,
Y.
,
Lee
,
S.
,
Chai
,
X.
,
Chen
,
G.
, and
Hu
,
L.
,
2013
, “
Highly Transparent and Writable Wood All-Cellulose Hybrid Nanostructured Paper
,”
J. Mater. Chem. C
,
1
(
39
), pp.
6191
6197
.
106.
Jonoobi
,
M.
,
Mathew
,
A. P.
, and
Oksman
,
K.
,
2012
, “
Producing Low-Cost Cellulose Nanofiber From Sludge as New Source of Raw Materials
,”
Ind. Crops Prod.
,
40
, pp.
232
238
.
107.
Sehaqui
,
H.
,
Zimmermann
,
T.
, and
Tingaut
,
P.
,
2014
, “
Hydrophobic Cellulose Nanopaper Through a Mild Esterification Procedure
,”
Cellulose
,
21
(
1
), pp.
367
382
.
108.
Chen
,
Y.
,
Geng
,
B.
,
Ru
,
J.
,
Tong
,
C.
,
Liu
,
H.
, and
Chen
,
J.
,
2017
, “
Comparative Characteristics of TEMPO-Oxidized Cellulose Nanofibers and Resulting Nanopapers From Bamboo, Softwood, and Hardwood Pulps
,”
Cellulose
,
24
(
11
), pp.
4831
4844
.
109.
Chun
,
S. J.
,
Lee
,
S. Y.
,
Doh
,
G. H.
,
Lee
,
S.
, and
Kim
,
J. H.
,
2011
, “
Preparation of Ultrastrength Nanopapers Using Cellulose Nanofibrils
,”
J. Ind. Eng. Chem.
,
17
(
3
), pp.
521
526
.
110.
Rodionova
,
G.
,
Saito
,
T.
,
Lenes
,
M.
,
Eriksen
,
Ø.
,
Gregersen
,
Ø.
,
Fukuzumi
,
H.
, and
Isogai
,
A.
,
2012
, “
Mechanical and Oxygen Barrier Properties of Films Prepared From Fibrillated Dispersions of TEMPO-Oxidized Norway Spruce and Eucalyptus Pulps
,”
Cellulose
,
19
(
3
), pp.
705
711
.
111.
Petroudy
,
S. R. D.
,
Garmaroody
,
E. R.
, and
Rudi
,
H.
,
2017
, “
Oriented Cellulose Nanopaper (OCNP) Based on Bagasse Cellulose Nanofibrils
,”
Carbohydr. Polym.
,
157
, pp.
1883
1891
.
112.
Benítez
,
A. J.
,
Torres-Rendon
,
J.
,
Poutanen
,
M.
, and
Walther
,
A.
,
2013
, “
Humidity and Multiscale Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose Nanofibrils
,”
Biomacromolecules
,
14
(
12
), pp.
4497
4506
.
113.
Österberg
,
M.
,
Vartiainen
,
J.
,
Lucenius
,
J.
,
Hippi
,
U.
,
Seppälä
,
J.
,
Serimaa
,
R.
, and
Laine
,
J.
,
2013
, “
A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4640
4647
.
114.
Fukuzumi
,
H.
,
Saito
,
T.
,
Iwata
,
T.
,
Kumamoto
,
Y.
, and
Isogai
,
A.
,
2009
, “
Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation
,”
Biomacromolecules
,
10
(
1
), pp.
162
165
.
115.
Puangsin
,
B.
,
Yang
,
Q.
,
Saito
,
T.
, and
Isogai
,
A.
,
2013
, “
Comparative Characterization of TEMPO-Oxidized Cellulose Nanofibril Films Prepared From Non-Wood Resources
,”
Int. J. Biol. Macromol.
,
59
, pp.
208
213
.
116.
Costa
,
V. L. D.
,
Costa
,
A. P.
,
Amaral
,
M. E.
,
Oliveira
,
C.
,
Gama
,
M.
,
Dourado
,
F.
, and
Simões
,
R. M.
,
2016
, “
Effect of Hot Calendering on Physical Properties and Water Vapor Transfer Resistance of Bacterial Cellulose Films
,”
J. Mater. Sci.
,
51
(
21
), pp.
9562
9572
.
117.
Nobuta
,
K.
,
Teramura
,
H.
,
Ito
,
H.
,
Hongo
,
C.
,
Kawaguchi
,
H.
,
Ogino
,
C.
,
Kondo
,
A.
, and
Nishino
,
T.
,
2016
, “
Characterization of Cellulose Nanofiber Sheets From Different Refining Processes
,”
Cellulose
,
23
(
1
), pp.
403
414
.
118.
Kang
,
X.
,
Sun
,
P.
,
Kuga
,
S.
,
Wang
,
C.
,
Zhao
,
Y.
,
Wu
,
M.
, and
Huang
,
Y.
,
2017
, “
Thin Cellulose Nanofiber From Corncob Cellulose and Its Performance in Transparent Nanopaper
,”
ACS Sustainable Chem. Eng.
,
5
(
3
), pp.
2529
2534
.
119.
Wang
,
Q.
,
Du
,
H.
,
Zhang
,
F.
,
Zhang
,
Y.
,
Wu
,
M.
,
Yu
,
G.
,
Liu
,
C.
,
Li
,
B.
, and
Peng
,
H.
,
2018
, “
Flexible Cellulose Nanopaper With High Wet Tensile Strength, High Toughness and Tunable Ultraviolet Blocking Ability Fabricated From Tobacco Stalk Via a Sustainable Method
,”
J. Mater. Chem. A
,
6
(
27
), pp.
13021
13030
.
120.
Santucci
,
B. S.
,
Bras
,
J.
,
Belgacem
,
M. N.
,
da Silva Curvelo
,
A. A.
, and
Pimenta
,
M. T. B.
,
2016
, “
Evaluation of the Effects of Chemical Composition and Refining Treatments on the Properties of Nanofibrillated Cellulose Films From Sugarcane Bagasse
,”
Ind. Crops Prod.
,
91
, pp.
238
248
.
121.
Jiang
,
F.
,
Kondo
,
T.
, and
Hsieh
,
Y. L.
,
2016
, “
Rice Straw Cellulose Nanofibrils Via Aqueous Counter Collision and Differential Centrifugation and Their Self-Assembled Structures
,”
ACS Sustainable Chem. Eng.
,
4
(
3
), pp.
1697
1706
.
122.
Guo
,
J.
,
Uddin
,
K. M. A.
,
Mihhels
,
K.
,
Fang
,
W.
,
Laaksonen
,
P.
,
Zhu
,
J. Y.
, and
Rojas
,
O. J.
,
2017
, “
Contribution of Residual Proteins to the Thermomechanical Performance of Cellulosic Nanofibrils Isolated From Green Macroalgae
,”
ACS Sustainable Chem. Eng.
,
5
(
8
), pp.
6978
6985
.
123.
Rojo
,
E.
,
Peresin
,
M. S.
,
Sampson
,
W. W.
,
Hoeger
,
I. C.
,
Vartiainen
,
J.
,
Laine
,
J.
, and
Rojas
,
O. J.
,
2015
, “
Comprehensive Elucidation of the Effect of Residual Lignin on the Physical, Barrier, Mechanical and Surface Properties of Nanocellulose Films
,”
Green Chem.
,
17
(
3
), pp.
1853
1866
.
124.
Bian
,
H.
,
Gao
,
Y.
,
Wang
,
R.
,
Liu
,
Z.
,
Wu
,
W.
, and
Dai
,
H.
,
2018
, “
Contribution of Lignin to the Surface Structure and Physical Performance of Cellulose Nanofibrils Film
,”
Cellulose
,
25
(
2
), pp.
1309
1318
.
125.
Arola
,
S.
,
Malho
,
J. M.
,
Laaksonen
,
P.
,
Lille
,
M.
, and
Linder
,
M. B.
,
2013
, “
The Role of Hemicellulose in Nanofibrillated Cellulose Networks
,”
Soft Matter
,
9
(
4
), pp.
1319
1326
.
126.
Spence
,
K. L.
,
Venditti
,
R. A.
,
Habibi
,
Y.
,
Rojas
,
O. J.
, and
Pawlak
,
J. J.
,
2010
, “
The Effect of Chemical Composition on Microfibrillar Cellulose Films From Wood Pulps: Mechanical Processing and Physical Properties
,”
Bioresour. Technol.
,
101
(
15
), pp.
5961
5968
.
127.
Ferrer
,
A.
,
Quintana
,
E.
,
Filpponen
,
I.
,
Solala
,
I.
,
Vidal
,
T.
,
Rodríguez
,
A.
,
Laine
,
J.
, and
Rojas
,
O. J.
,
2012
, “
Effect of Residual Lignin and Heteropolysaccharides in Nanofibrillar Cellulose and Nanopaper From Wood Fibers
,”
Cellulose
,
19
(
6
), pp.
2179
2193
.
128.
Galland
,
S.
,
Berthold
,
F.
,
Prakobna
,
K.
, and
Berglund
,
L. A.
,
2015
, “
Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper
,”
Biomacromolecules
,
16
(
8
), pp.
2427
2435
.
129.
Hansoge
,
N. K.
,
Huang
,
T.
,
Sinko
,
R.
,
Xia
,
W.
,
Chen
,
W.
, and
Keten
,
S.
,
2018
, “
Materials by Design for Stiff and Tough Hairy Nanoparticle Assemblies
,”
ACS Nano
,
12
(
8
), pp.
7946
7958
.
130.
Fleming
,
K.
,
Gray
,
D. G.
, and
Matthews
,
S.
,
2001
, “
Cellulose Crystallites
,”
Chem.-A Eur. J.
,
7
(
9
), pp.
1831
1836
.
131.
Habibi
,
Y.
,
Lucia
,
L. A.
, and
Rojas
,
O. J.
,
2010
, “
Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications
,”
Chem. Rev.
,
110
(
6
), pp.
3479
3500
.
132.
Rånby
,
B. G.
, and
Ribi
,
E. D.
,
1950
, “
Über Den Feinbau Der Zellulose
,”
Experientia
,
6
(
1
), pp.
12
14
.
133.
Usov
,
I.
,
Nyström
,
G.
,
Adamcik
,
J.
,
Handschin
,
S.
,
Schütz
,
C.
,
Fall
,
A.
,
Bergström
,
L.
, and
Mezzenga
,
R.
,
2015
, “
Understanding Nanocellulose Chirality and Structure-Properties Relationship at the Single Fibril Level
,”
Nat. Commun.
,
6
, p.
7564
.
134.
Revol
,
J. F.
,
Godbout
,
L.
, and
Gray
,
D. G.
,
1998
, “
Solid Self-Assembled Films of Cellulose With Chiral Nematic Order and Optically Variable Properties
,”
J. Pulp Paper Sci.
,
24
(
5
), pp.
146
149
.
135.
Edgar
,
C. D.
, and
Gray
,
D. G.
,
2001
, “
Induced Circular Dichroism of Chiral Nematic Cellulose Films
,”
Cellulose
,
8
(
1
), pp.
5
12
.
136.
Viet
,
D.
,
Beck-Candanedo
,
S.
, and
Gray
,
D. G.
,
2007
, “
Dispersion of Cellulose Nanocrystals in Polar Organic Solvents
,”
Cellulose
,
14
(
2
), pp.
109
113
.
137.
Edgar
,
C. D.
, and
Gray
,
D. G.
,
2003
, “
Smooth Model Cellulose I Surfaces From Nanocrystal Suspensions
,”
Cellulose
,
10
(
4
), pp.
299
306
.
138.
Habibi
,
Y.
,
Foulon
,
L.
,
Aguié-Béghin
,
V.
,
Molinari
,
M.
, and
Douillard
,
R.
,
2007
, “
Langmuir–Blodgett Films of Cellulose Nanocrystals: Preparation and Characterization
,”
J. Colloid Interface Sci.
,
316
(
2
), pp.
388
397
.
139.
Habibi
,
Y.
,
Hoeger
,
I.
,
Kelley
,
S. S.
, and
Rojas
,
O. J.
,
2010
, “
Development of Langmuir−Schaeffer Cellulose Nanocrystal Monolayers and Their Interfacial Behaviors
,”
Langmuir
,
26
(
2
), pp.
990
1001
.
140.
Pan
,
J.
,
Hamad
,
W.
, and
Straus
,
S. K.
,
2010
, “
Parameters Affecting the Chiral Nematic Phase of Nanocrystalline Cellulose Films
,”
Macromolecules
,
43
(
8
), pp.
3851
3858
.
141.
Majoinen
,
J.
,
Kontturi
,
E.
,
Ikkala
,
O.
, and
Gray
,
D. G.
,
2012
, “
SEM Imaging of Chiral Nematic Films Cast From Cellulose Nanocrystal Suspensions
,”
Cellulose
,
19
(
5
), pp.
1599
1605
.
142.
Mu
,
X.
, and
Gray
,
D. G.
,
2014
, “
Formation of Chiral Nematic Films From Cellulose Nanocrystal Suspensions Is a Two-Stage Process
,”
Langmuir
,
30
(
31
), pp.
9256
9260
.
143.
Beck
,
S.
,
Bouchard
,
J.
, and
Berry
,
R.
,
2011
, “
Controlling the Reflection Wavelength of Iridescent Solid Films of Nanocrystalline Cellulose
,”
Biomacromolecules
,
12
(
1
), pp.
167
172
.
144.
Beck
,
S.
,
Bouchard
,
J.
,
Chauve
,
G.
, and
Berry
,
R.
,
2013
, “
Controlled Production of Patterns in Iridescent Solid Films of Cellulose Nanocrystals
,”
Cellulose
,
20
(
3
), pp.
1401
1411
.
145.
Nguyen
,
T. D.
,
Hamad
,
W. Y.
, and
MacLachlan
,
M. J.
,
2013
, “
Tuning the Iridescence of Chiral Nematic Cellulose Nanocrystals and Mesoporous Silica Films by Substrate Variation
,”
Chem. Commun.
,
49
(
96
), pp.
11296
11298
.
146.
Chen
,
Q.
,
Liu
,
P.
,
Nan
,
F.
,
Zhou
,
L.
, and
Zhang
,
J.
,
2014
, “
Tuning the Iridescence of Chiral Nematic Cellulose Nanocrystal Films With a Vacuum-Assisted Self-Assembly Technique
,”
Biomacromolecules
,
15
(
11
), pp.
4343
4350
.
147.
Liu
,
P.
,
Guo
,
X.
,
Nan
,
F.
,
Duan
,
Y.
, and
Zhang
,
J.
,
2017
, “
Modifying Mechanical, Optical Properties and Thermal Processability of Iridescent Cellulose Nanocrystal Films Using Ionic Liquid
,”
ACS Appl. Mater. Interfaces
,
9
(
3
), pp.
3085
3092
.
148.
Fernandes
,
S. N.
,
Almeida
,
P. L.
,
Monge
,
N.
,
Aguirre
,
L. E.
,
Reis
,
D.
,
de Oliveira
,
C. L. P.
,
Neto
,
A. M. F.
,
Pieranski
,
P.
, and
Godinho
,
M. H.
,
2017
, “
Mind the Microgap in Iridescent Cellulose Nanocrystal Films
,”
Adv. Mater.
,
29
(
2
), p.
1603560
.
149.
Diaz
,
J. A.
,
Wu
,
X.
,
Martini
,
A.
,
Youngblood
,
J. P.
, and
Moon
,
R. J.
,
2013
, “
Thermal Expansion of Self-Organized and Shear-Oriented Cellulose Nanocrystal Films
,”
Biomacromolecules
,
14
(
8
), pp.
2900
2908
.
150.
Diaz
,
J. A.
,
Ye
,
Z.
,
Wu
,
X.
,
Moore
,
A. L.
,
Moon
,
R. J.
,
Martini
,
A.
,
Boday
,
D. J.
, and
Youngblood
,
J. P.
,
2014
, “
Thermal Conductivity in Nanostructured Films: From Single Cellulose Nanocrystals to Bulk Films
,”
Biomacromolecules
,
15
(
11
), pp.
4096
4101
.
151.
Park
,
J. H.
,
Noh
,
J.
,
Schütz
,
C.
,
Salazar-Alvarez
,
G.
,
Scalia
,
G.
,
Bergström
,
L.
, and
Lagerwall
,
J. P.
,
2014
, “
Macroscopic Control of Helix Orientation in Films Dried From Cholesteric Liquid-Crystalline Cellulose Nanocrystal Suspensions
,”
ChemPhysChem
,
15
(
7
), pp.
1477
1484
.
152.
Frka-Petesic
,
B.
,
Radavidson
,
H.
,
Jean
,
B.
, and
Heux
,
L.
,
2017
, “
Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields
,”
Adv. Mater.
,
29
(
11
), p.
1606208
.
153.
Bardet
,
R.
,
Roussel
,
F.
,
Coindeau
,
S.
,
Belgacem
,
N.
, and
Bras
,
J.
,
2015
, “
Engineered Pigments Based on Iridescent Cellulose Nanocrystal Films
,”
Carbohydr. Polym.
,
122
, pp.
367
375
.
154.
Lagerwall
,
J. P.
,
Schütz
,
C.
,
Salajkova
,
M.
,
Noh
,
J.
,
Park
,
J. H.
,
Scalia
,
G.
, and
Bergström
,
L.
,
2014
, “
Cellulose Nanocrystal-Based Materials: From Liquid Crystal Self-Assembly and Glass Formation to Multifunctional Thin Films
,”
NPG Asia Mater.
,
6
(
1
), p.
e80
.
155.
Natarajan
,
B.
, and
Gilman
,
J. W.
,
2018
, “
Bioinspired Bouligand Cellulose Nanocrystal Composites: A Review of Mechanical Properties
,”
Philos. Trans. R. Soc. A
,
376
(
2112
), p.
20170050
.
156.
Reising
,
A. B.
,
Moon
,
R. J.
, and
Youngblood
,
J. P.
,
2012
, “
Effect of Particle Alignment on Mechanical Properties of Neat Cellulose Nanocrystal Films
,”
J. Sci. Technol. Prod. Processes
,
2
(
6
), pp.
32
41
.https://www.fpl.fs.fed.us/documnts/pdf2012/fpl_2012_reising001.pdf
157.
Helbert
,
W.
,
Cavaille
,
J. Y.
, and
Dufresne
,
A.
,
1996
, “
Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers—Part I: Processing and Mechanical Behavior
,”
Polym. Compos.
,
17
(
4
), pp.
604
611
.
158.
Noishiki
,
Y.
,
Nishiyama
,
Y.
,
Wada
,
M.
,
Kuga
,
S.
, and
Magoshi
,
J.
,
2002
, “
Mechanical Properties of Silk Fibroin–Microcrystalline Cellulose Composite Films
,”
J. Appl. Polym. Sci.
,
86
(
13
), pp.
3425
3429
.
159.
Natarajan
,
B.
,
Krishnamurthy
,
A.
,
Qin
,
X.
,
Emiroglu
,
C. D.
,
Forster
,
A.
,
Foster
,
E. J.
,
Weder
,
C.
,
Fox
,
D. M.
,
Keten
,
S.
,
Obrzut
,
J.
, and
Gilman
,
J. W.
,
2018
, “
Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films
,”
Adv. Funct. Mater.
,
28
(
26
), p.
1800032
.
160.
Sinko
,
R.
,
Qin
,
X.
, and
Keten
,
S.
,
2015
, “
Interfacial Mechanics of Cellulose Nanocrystals
,”
MRS Bull.
,
40
(
4
), pp.
340
348
.
161.
Sun
,
X.
,
Wu
,
Q.
,
Zhang
,
X.
,
Ren
,
S.
,
Lei
,
T.
,
Li
,
W.
,
Xu
,
G.
, and
Zhang
,
Q.
,
2018
, “
Nanocellulose Films With Combined Cellulose Nanofibers and Nanocrystals: Tailored Thermal, Optical and Mechanical Properties
,”
Cellulose
,
25
(
2
), pp.
1103
1115
.
162.
Ifuku
,
S.
, and
Saimoto
,
H.
,
2012
, “
Chitin Nanofibers: Preparations, Modifications, and Applications
,”
Nanoscale
,
4
(
11
), pp.
3308
3318
.
163.
Fan
,
Y.
,
Fukuzumi
,
H.
,
Saito
,
T.
, and
Isogai
,
A.
,
2012
, “
Comparative Characterization of Aqueous Dispersions and Cast Films of Different Chitin Nanowhiskers/Nanofibers
,”
Int. J. Biol. Macromolecules
,
50
(
1
), pp.
69
76
.
164.
Tamura
,
H.
,
Nagahama
,
H.
, and
Tokura
,
S.
,
2006
, “
Preparation of Chitin Hydrogel Under Mild Conditions
,”
Cellulose
,
13
(
4
), pp.
357
364
.
165.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(
6348
), pp.
56
58
.
166.
Poggi
,
M. A.
,
Lillehei
,
P. T.
, and
Bottomley
,
L. A.
,
2005
, “
Chemical Force Microscopy on Single-Walled Carbon Nanotube Paper
,”
Chem. Mater.
,
17
(
17
), pp.
4289
4295
.
167.
Itkis
,
M. E.
,
Borondics
,
F.
,
Yu
,
A.
, and
Haddon
,
R. C.
,
2007
, “
Thermal Conductivity Measurements of Semitransparent Single-Walled Carbon Nanotube Films by a Bolometric Technique
,”
Nano Lett.
,
7
(
4
), pp.
900
904
.
168.
Kim
,
Y.
,
Torrens
,
O. N.
,
Kikkawa
,
J. M.
,
Abou-Hamad
,
E.
,
Goze-Bac
,
C.
, and
Luzzi
,
D. E.
,
2007
, “
High-Purity Diamagnetic Single-Wall Carbon Nanotube Buckypaper
,”
Chem. Mater.
,
19
(
12
), pp.
2982
2986
.
169.
Park
,
J. G.
,
Li
,
S.
,
Liang
,
R.
,
Zhang
,
C.
, and
Wang
,
B.
,
2008
, “
Structural Changes and Raman Analysis of Single-Walled Carbon Nanotube Buckypaper After High Current Density Induced Burning
,”
Carbon
,
46
(
9
), pp.
1175
1183
.
170.
Muramatsu
,
H.
,
Hayashi
,
T.
,
Kim
,
Y. A.
,
Shimamoto
,
D.
,
Kim
,
Y. J.
,
Tantrakarn
,
K.
,
Endo
,
M.
,
Terrones
,
M.
, and
Dresselhaus
,
M. S.
,
2005
, “
Pore Structure and Oxidation Stability of Double E-Walled Carbon Nanotube-Derived Bucky Paper
,”
Chem. Phys. Lett.
,
414
(
4–6
), pp.
444
448
.
171.
Kim
,
Y. A.
,
Muramatsu
,
H.
,
Hayashi
,
T.
,
Endo
,
M.
,
Terrones
,
M.
, and
Dresselhaus
,
M. S.
,
2006
, “
Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper
,”
Chem. Vapor Deposition
,
12
(
6
), pp.
327
330
.
172.
Smajda
,
R.
,
Kukovecz
,
Á.
,
Kónya
,
Z.
, and
Kiricsi
,
I.
,
2007
, “
Structure and Gas Permeability of Multi-Wall Carbon Nanotube Buckypapers
,”
Carbon
,
45
(
6
), pp.
1176
1184
.
173.
Li
,
D.
,
Müller
,
M. B.
,
Gilje
,
S.
,
Kaner
,
R. B.
, and
Wallace
,
G. G.
,
2008
, “
Processable Aqueous Dispersions of Graphene Nanosheets
,”
Nat. Nanotechnol.
,
3
(
2
), pp.
101
105
.
174.
Yang
,
K.
,
He
,
J.
,
Puneet
,
P.
,
Su
,
Z.
,
Skove
,
M. J.
,
Gaillard
,
J.
,
Tritt
,
T. M.
, and
Rao
,
A. M.
,
2010
, “
Tuning Electrical and Thermal Connectivity in Multiwalled Carbon Nanotube Buckypaper
,”
J. Phys.: Condens. Matter
,
22
(
33
), p.
334215
.
175.
Kumar
,
N. A.
,
Jeon
,
I. Y.
,
Sohn
,
G. J.
,
Jain
,
R.
,
Kumar
,
S.
, and
Baek
,
J. B.
,
2011
, “
Highly Conducting and Flexible Few-Walled Carbon Nanotube Thin Film
,”
ACS Nano
,
5
(
3
), pp.
2324
2331
.
176.
Wu
,
Z.
,
Chen
,
Z.
,
Du
,
X.
,
Logan
,
J. M.
,
Sippel
,
J.
,
Nikolou
,
M.
,
Kamaras
,
K.
,
Reynolds
,
J. R.
,
Tanner
,
D. B.
,
Hebard
,
A. F.
, and
Rinzler
,
A. G.
,
2004
, “
Transparent, Conductive Carbon Nanotube Films
,”
Science
,
305
(
5688
), pp.
1273
1276
.
177.
Hall
,
L. J.
,
Coluci
,
V. R.
,
Galvão
,
D. S.
,
Kozlov
,
M. E.
,
Zhang
,
M.
,
Dantas
,
S. O.
, and
Baughman
,
R. H.
,
2008
, “
Sign Change of Poisson's Ratio for Carbon Nanotube Sheets
,”
Science
,
320
(
5875
), pp.
504
507
.
178.
Kim
,
Y.
,
Minami
,
N.
,
Zhu
,
W.
,
Kazaoui
,
S.
,
Azumi
,
R.
, and
Matsumoto
,
M.
,
2003
, “
Langmuir–Blodgett Films of Single-Wall Carbon Nanotubes: Layer-by-Layer Deposition and In-Plane Orientation of Tubes
,”
Jpn. J. Appl. Phys.
,
42
(
12
), pp.
7629
7634
.
179.
Saran
,
N.
,
Parikh
,
K.
,
Suh
,
D. S.
,
Munoz
,
E.
,
Kolla
,
H.
, and
Manohar
,
S. K.
,
2004
, “
Fabrication and Characterization of Thin Films of Single-Walled Carbon Nanotube Bundles on Flexible Plastic Substrates
,”
J. Am. Chem. Soc.
,
126
(
14
), pp.
4462
4463
.
180.
Zhang
,
X.
,
2008
, “
Hydroentangling: A Novel Approach to High-Speed Fabrication of Carbon Nanotube Membranes
,”
Adv. Mater.
,
20
(
21
), pp.
4140
4144
.
181.
Lee
,
S. W.
,
Kim
,
B. S.
,
Chen
,
S.
,
Shao-Horn
,
Y.
, and
Hammond
,
P. T.
,
2009
, “
Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications
,”
J. Am. Chem. Soc.
,
131
(
2
), pp.
671
679
.
182.
LeMieux
,
M. C.
,
Roberts
,
M.
,
Barman
,
S.
,
Jin
,
Y. W.
,
Kim
,
J. M.
, and
Bao
,
Z.
,
2008
, “
Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors
,”
Science
,
321
(
5885
), pp.
101
104
.
183.
Jo
,
J. W.
,
Jung
,
J. W.
,
Lee
,
J. U.
, and
Jo
,
W. H.
,
2010
, “
Fabrication of Highly Conductive and Transparent Thin Films From Single-Walled Carbon Nanotubes Using a New Non-Ionic Surfactant Via Spin Coating
,”
ACS Nano
,
4
(
9
), pp.
5382
5388
.
184.
Dan
,
B.
,
Irvin
,
G. C.
, and
Pasquali
,
M.
,
2009
, “
Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films
,”
ACS Nano
,
3
(
4
), pp.
835
843
.
185.
Liu
,
Q.
,
Fujigaya
,
T.
,
Cheng
,
H. M.
, and
Nakashima
,
N.
,
2010
, “
Free-Standing Highly Conductive Transparent Ultrathin Single-Walled Carbon Nanotube Films
,”
J. Am. Chem. Soc.
,
132
(
46
), pp.
16581
16586
.
186.
Rigueur
,
J. L.
,
Hasan
,
S. A.
,
Mahajan
,
S. V.
, and
Dickerson
,
J. H.
,
2010
, “
Buckypaper Fabrication by Liberation of Electrophoretically Deposited Carbon Nanotubes
,”
Carbon
,
48
(
14
), pp.
4090
4099
.
187.
Wang
,
D.
,
Song
,
P.
,
Liu
,
C.
,
Wu
,
W.
, and
Fan
,
S.
,
2008
, “
Highly Oriented Carbon Nanotube Papers Made of Aligned Carbon Nanotubes
,”
Nanotechnology
,
19
(
7
), p.
075609
.
188.
Zhang
,
L.
,
Zhang
,
G.
,
Liu
,
C.
, and
Fan
,
S.
,
2012
, “
High-Density Carbon Nanotube Buckypapers With Superior Transport and Mechanical Properties
,”
Nano Lett.
,
12
(
9
), pp.
4848
4852
.
189.
Zhang
,
M.
,
Fang
,
S.
,
Zakhidov
,
A. A.
,
Lee
,
S. B.
,
Aliev
,
A. E.
,
Williams
,
C. D.
,
Atkinson
,
K. R.
, and
Baughman
,
R. H.
,
2005
, “
Strong, Transparent, Multifunctional, Carbon Nanotube Sheets
,”
Science
,
309
(
5738
), pp.
1215
1219
.
190.
Inoue
,
Y.
,
Suzuki
,
Y.
,
Minami
,
Y.
,
Muramatsu
,
J.
,
Shimamura
,
Y.
,
Suzuki
,
K.
,
Ghemes
,
A.
,
Okada
,
M.
,
Sakakibara
,
S.
,
Mimura
,
H.
, and
Naito
,
K.
,
2011
, “
Anisotropic Carbon Nanotube Papers Fabricated From Multiwalled Carbon Nanotube Webs
,”
Carbon
,
49
(
7
), pp.
2437
2443
.
191.
Jiang
,
K.
,
Wang
,
J.
,
Li
,
Q.
,
Liu
,
L.
,
Liu
,
C.
, and
Fan
,
S.
,
2011
, “
Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications
,”
Adv. Mater.
,
23
(
9
), pp.
1154
1161
.
192.
Di
,
J.
,
Hu
,
D.
,
Chen
,
H.
,
Yong
,
Z.
,
Chen
,
M.
,
Feng
,
Z.
,
Zhu
,
Y.
, and
Li
,
Q.
,
2012
, “
Ultrastrong, Foldable, and Highly Conductive Carbon Nanotube Film
,”
ACS Nano
,
6
(
6
), pp.
5457
5464
.
193.
Pöhls
,
J. H.
,
Johnson
,
M. B.
,
White
,
M. A.
,
Malik
,
R.
,
Ruff
,
B.
,
Jayasinghe
,
C.
,
Schulz
,
M. J.
, and
Shanov
,
V.
,
2012
, “
Physical Properties of Carbon Nanotube Sheets Drawn From Nanotube Arrays
,”
Carbon
,
50
(
11
), pp.
4175
4183
.
194.
Ma
,
W.
,
Song
,
L.
,
Yang
,
R.
,
Zhang
,
T.
,
Zhao
,
Y.
,
Sun
,
L.
,
Ren
,
Y.
,
Liu
,
D.
,
Liu
,
L.
,
Shen
,
J.
,
Zhang
,
Z.
,
Xiang
,
Y.
,
Zhou
,
W.
, and
Xie
,
S.
,
2007
, “
Directly Synthesized Strong, Highly Conducting, Transparent Single-Walled Carbon Nanotube Films
,”
Nano Lett.
,
7
(
8
), pp.
2307
2311
.
195.
Feng
,
J. M.
,
Wang
,
R.
,
Li
,
Y. L.
,
Zhong
,
X. H.
,
Cui
,
L.
,
Guo
,
Q. J.
, and
Hou
,
F.
,
2010
, “
One-Step Fabrication of High Quality Double-Walled Carbon Nanotube Thin Films by a Chemical Vapor Deposition Process
,”
Carbon
,
48
(
13
), pp.
3817
3824
.
196.
Nasibulin
,
A. G.
,
Kaskela
,
A.
,
Mustonen
,
K.
,
Anisimov
,
A. S.
,
Ruiz
,
V.
,
Kivisto
,
S.
,
Rackauskas
,
S.
,
Timmermans
,
M. Y.
,
Pudas
,
M.
,
Aitchison
,
B.
,
Kauppinen
,
M.
,
Brown
,
D. P.
,
Okhotnikov
,
O. G.
, and
Kauppinen
,
E. I.
,
2011
, “
Multifunctional Free-Standing Single-Walled Carbon Nanotube Films
,”
ACS Nano
,
5
(
4
), pp.
3214
3221
.
197.
Luo
,
X. G.
,
Huang
,
X. X.
,
Wang
,
X. X.
,
Zhong
,
X. H.
,
Meng
,
X. X.
, and
Wang
,
J. N.
,
2016
, “
Continuous Preparation of Carbon Nanotube Film and Its Applications in Fuel and Solar Cells
,”
ACS Appl. Mater. Interfaces
,
8
(
12
), pp.
7818
7825
.
198.
Hone
,
J.
,
Llaguno
,
M. C.
,
Nemes
,
N. M.
,
Johnson
,
A. T.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
,
2000
, “
Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
77
(
5
), pp.
666
668
.
199.
Smith
,
B. W.
,
Benes
,
Z.
,
Luzzi
,
D. E.
,
Fischer
,
J. E.
,
Walters
,
D. A.
,
Casavant
,
M. J.
,
Schmidt
,
J.
, and
Smalley
,
R. E.
,
2000
, “
Structural Anisotropy of Magnetically Aligned Single Wall Carbon Nanotube Films
,”
Appl. Phys. Lett.
,
77
(
5
), pp.
663
665
.
200.
Walters
,
D. A.
,
Casavant
,
M. J.
,
Qin
,
X. C.
,
Huffman
,
C. B.
,
Boul
,
P. J.
,
Ericson
,
L. M.
,
Haroz
,
E. H.
,
O'Connell
,
M. J.
,
Smith
,
K.
,
Colbert
,
D. T.
, and
Smalley
,
R. E.
,
2001
, “
In-Plane-Aligned Membranes of Carbon Nanotubes
,”
Chem. Phys. Lett.
,
338
(
1
), pp.
14
20
.
201.
Li
,
S.
,
Park
,
J. G.
,
Liang
,
Z.
,
Siegrist
,
T.
,
Liu
,
T.
,
Zhang
,
M.
,
Cheng
,
Q.
,
Wang
,
B.
, and
Zhang
,
C.
,
2012
, “
In Situ Characterization of Structural Changes and the Fraction of Aligned Carbon Nanotube Networks Produced by Stretching
,”
Carbon
,
50
(
10
), pp.
3859
3867
.
202.
Liu
,
Q.
,
Li
,
M.
,
Gu
,
Y.
,
Zhang
,
Y.
,
Wang
,
S.
,
Li
,
Q.
, and
Zhang
,
Z.
,
2014
, “
Highly Aligned Dense Carbon Nanotube Sheets Induced by Multiple Stretching and Pressing
,”
Nanoscale
,
6
(
8
), pp.
4338
4344
.
203.
Xu
,
W.
,
Chen
,
Y.
,
Zhan
,
H.
, and
Wang
,
J. N.
,
2016
, “
High-Strength Carbon Nanotube Film From Improving Alignment and Densification
,”
Nano Lett.
,
16
(
2
), pp.
946
952
.
204.
Han
,
B.
,
Xue
,
X.
,
Xu
,
Y.
,
Zhao
,
Z.
,
Guo
,
E.
,
Liu
,
C.
,
Luo
,
L.
, and
Hou
,
H.
,
2017
, “
Preparation of Carbon Nanotube Film With High Alignment and Elevated Density
,”
Carbon
,
122
, pp.
496
503
.
205.
Cooper
,
S. M.
,
Chuang
,
H. F.
,
Cinke
,
M.
,
Cruden
,
B. A.
, and
Meyyappan
,
M.
,
2003
, “
Gas Permeability of a Buckypaper Membrane
,”
Nano Lett.
,
3
(
2
), pp.
189
192
.
206.
Kulesza
,
S.
,
Szroeder
,
P.
,
Patyk
,
J. K.
,
Szatkowski
,
J.
, and
Kozanecki
,
M.
,
2006
, “
High-Temperature Electrical Transport Properties of Buckypapers Composed of Doped Single-Walled Carbon Nanotubes
,”
Carbon
,
44
(
11
), pp.
2178
2183
.
207.
Chen
,
H.
,
Chen
,
M.
,
Di
,
J.
,
Xu
,
G.
,
Li
,
H.
, and
Li
,
Q.
,
2012
, “
Architecting Three-Dimensional Networks in Carbon Nanotube Buckypapers for Thermal Interface Materials
,”
J. Phys. Chem. C
,
116
(
6
), pp.
3903
3909
.
208.
Ng
,
S. H.
,
Wang
,
J.
,
Guo
,
Z. P.
,
Chen
,
J.
,
Wang
,
G. X.
, and
Liu
,
H. K.
,
2005
, “
Single Wall Carbon Nanotube Paper as Anode for Lithium-Ion Battery
,”
Electrochim. Acta
,
51
(
1
), pp.
23
28
.
209.
Prokudina
,
N. A.
,
Shishchenko
,
E. R.
,
Joo
,
O. S.
,
Hyung
,
K. H.
, and
Han
,
S. H.
,
2005
, “
A Carbon Nanotube Film as a Radio Frequency Filter
,”
Carbon
,
43
(
9
), pp.
1815
1819
.
210.
Chen
,
P.
,
Fu
,
Y.
,
Aminirad
,
R.
,
Wang
,
C.
,
Zhang
,
J.
,
Wang
,
K.
,
Galatsis
,
K.
, and
Zhou
,
C.
,
2011
, “
Fully Printed Separated Carbon Nanotube Thin Film Transistor Circuits and Its Application in Organic Light Emitting Diode Control
,”
Nano Lett.
,
11
(
12
), pp.
5301
5308
.
211.
Chen
,
I. W. P.
,
Liang
,
Z.
,
Wang
,
B.
, and
Zhang
,
C.
,
2010
, “
Charge-Induced Asymmetrical Displacement of an Aligned Carbon Nanotube Buckypaper Actuator
,”
Carbon
,
48
(
4
), pp.
1064
1069
.
212.
Baughman
,
R. H.
,
Cui
,
C.
,
Zakhidov
,
A. A.
,
Iqbal
,
Z.
,
Barisci
,
J. N.
,
Spinks
,
G. M.
,
Wallace
,
G. G.
,
Mazzoldi
,
A.
,
De Rossi
,
D.
,
Rinzler
,
A. G.
,
Jaschinski
,
O.
,
Roth
,
S.
, and
Kertesz
,
M.
,
1999
, “
Carbon Nanotube Actuators
,”
Science
,
284
(
5418
), pp.
1340
1344
.
213.
Do
,
Q. H.
,
Zeng
,
C.
,
Zhang
,
C.
,
Wang
,
B.
, and
Zheng
,
J.
,
2011
, “
Supercritical Fluid Deposition of Vanadium Oxide on Multi-Walled Carbon Nanotube Buckypaper for Supercapacitor Electrode Application
,”
Nanotechnology
,
22
(
36
), p.
365402
.
214.
Niu
,
Z.
,
Dong
,
H.
,
Zhu
,
B.
,
Li
,
J.
,
Hng
,
H. H.
,
Zhou
,
W.
,
Chen
,
X.
, and
Xie
,
S.
,
2013
, “
Highly Stretchable, Integrated Supercapacitors Based on Single-Walled Carbon Nanotube Films With Continuous Reticulate Architecture
,”
Adv. Mater.
,
25
(
7
), pp.
1058
1064
.
215.
Chen
,
H.
,
Di
,
J.
,
Jin
,
Y.
,
Chen
,
M.
,
Tian
,
J.
, and
Li
,
Q.
,
2013
, “
Active Carbon Wrapped Carbon Nanotube Buckypaper for the Electrode of Electrochemical Supercapacitors
,”
J. Power Sources
,
237
, pp.
325
331
.
216.
Li
,
Z.
,
Dharap
,
P.
,
Nagarajaiah
,
S.
,
Barrera
,
E. V.
, and
Kim
,
J. D.
,
2004
, “
Carbon Nanotube Film Sensors
,”
Adv. Mater.
,
16
(
7
), pp.
640
643
.
217.
Dharap
,
P.
,
Li
,
Z.
,
Nagarajaiah
,
S.
, and
Barrera
,
E. V.
,
2004
, “
Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing
,”
Nanotechnol.
,
15
(
3
), pp.
379
382
.
218.
Vohrer
,
U.
,
Kolaric
,
I.
,
Haque
,
M. H.
,
Roth
,
S.
, and
Detlaff-Weglikowska
,
U.
,
2004
, “
Carbon Nanotube Sheets for the Use as Artificial Muscles
,”
Carbon
,
42
(
5–6
), pp.
1159
1164
.
219.
Zheng
,
F.
,
Baldwin
,
D. L.
,
Fifield
,
L. S.
,
Anheier
,
N. C.
,
Aardahl
,
C. L.
, and
Grate
,
J. W.
,
2006
, “
Single-Walled Carbon Nanotube Paper as a Sorbent for Organic Vapor Preconcentration
,”
Anal. Chem.
,
78
(
7
), pp.
2442
2446
.
220.
Park
,
S.
,
Vosguerichian
,
M.
, and
Bao
,
Z.
,
2013
, “
A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics
,”
Nanoscale
,
5
(
5
), pp.
1727
1752
.
221.
Chen
,
H.
,
Zeng
,
S.
,
Chen
,
M.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2015
, “
Fabrication and Functionalization of Carbon Nanotube Films for High-Performance Flexible Supercapacitors
,”
Carbon
,
92
, pp.
271
296
.
222.
Koo
,
J. H.
,
Kim
,
D. C.
,
Shim
,
H. J.
,
Kim
,
T. H.
, and
Kim
,
D. H.
,
2018
, “
Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration
,”
Adv. Funct. Mater.
,
28
(
35
), p.
1801834
.
223.
Sreekumar
,
T. V.
,
Liu
,
T.
,
Kumar
,
S.
,
Ericson
,
L. M.
,
Hauge
,
R. H.
, and
Smalley
,
R. E.
,
2003
, “
Single-Wall Carbon Nanotube Films
,”
Chem. Mater.
,
15
(
1
), pp.
175
178
.
224.
Zhang
,
X.
,
Sreekumar
,
T. V.
,
Liu
,
T.
, and
Kumar
,
S.
,
2004
, “
Properties and Structure of Nitric Acid Oxidized Single Wall Carbon Nanotube Films
,”
J. Phys. Chem. B
,
108
(
42
), pp.
16435
16440
.
225.
Berhan
,
L.
,
Yi
,
Y. B.
,
Sastry
,
A. M.
,
Munoz
,
E.
,
Selvidge
,
M.
, and
Baughman
,
R.
,
2004
, “
Mechanical Properties of Nanotube Sheets: Alterations in Joint Morphology and Achievable Moduli in Manufacturable Materials
,”
J. Appl. Phys.
,
95
(
8
), pp.
4335
4345
.
226.
Whitten
,
P. G.
,
Spinks
,
G. M.
, and
Wallace
,
G. G.
,
2005
, “
Mechanical Properties of Carbon Nanotube Paper in Ionic Liquid and Aqueous Electrolytes
,”
Carbon
,
43
(
9
), pp.
1891
1896
.
227.
Blighe
,
F. M.
,
Lyons
,
P. E.
,
De
,
S.
,
Blau
,
W. J.
, and
Coleman
,
J. N.
,
2008
, “
On the Factors Controlling the Mechanical Properties of Nanotube Films
,”
Carbon
,
46
(
1
), pp.
41
47
.
228.
Park
,
J. G.
,
Smithyman
,
J.
,
Lin
,
C. Y.
,
Cooke
,
A.
,
Kismarahardja
,
A. W.
,
Li
,
S.
,
Liang
,
R.
,
Brooks
,
J. S.
,
Zhang
,
C.
, and
Wang
,
B.
,
2009
, “
Effects of Surfactants and Alignment on the Physical Properties of Single-Walled Carbon Nanotube Buckypaper
,”
J. Appl. Phys.
,
106
(
10
), p.
104310
.
229.
Sweetman
,
L. J.
,
Nghiem
,
L.
,
Chironi
,
I.
,
Triani
,
G.
,
in het Panhuis
,
M.
, and
Ralph
,
S. F.
,
2012
, “
Synthesis, Properties and Water Permeability of SWNT Buckypapers
,”
J. Mater. Chem.
,
22
(
27
), pp.
13800
13810
.
230.
Zhang
,
J.
,
Jiang
,
D.
,
Peng
,
H. X.
, and
Qin
,
F.
,
2013
, “
Enhanced Mechanical and Electrical Properties of Carbon Nanotube Buckypaper by In Situ Cross-Linking
,”
Carbon
,
63
, pp.
125
132
.
231.
Yu
,
X.
,
Zhang
,
X.
,
Zou
,
J.
,
Lan
,
Z.
,
Jiang
,
C.
,
Zhao
,
J.
,
Zhang
,
D.
,
Miao
,
M.
, and
Li
,
Q.
,
2016
, “
Solvent-Tunable Microstructures of Aligned Carbon Nanotube Films
,”
Adv. Mater. Interfaces
,
3
(
17
), p.
1600352
.
232.
Imai
,
M.
,
Akiyama
,
K.
,
Tanaka
,
T.
, and
Sano
,
E.
,
2010
, “
Highly Strong and Conductive Carbon Nanotube/Cellulose Composite Paper
,”
Compos. Sci. Technol.
,
70
(
10
), pp.
1564
1570
.
233.
Koga
,
H.
,
Saito
,
T.
,
Kitaoka
,
T.
,
Nogi
,
M.
,
Suganuma
,
K.
, and
Isogai
,
A.
,
2013
, “
Transparent, Conductive, and Printable Composites Consisting of TEMPO-Oxidized Nanocellulose and Carbon Nanotube
,”
Biomacromolecules
,
14
(
4
), pp.
1160
1165
.
234.
Huang
,
H. D.
,
Liu
,
C. Y.
,
Zhang
,
L. Q.
,
Zhong
,
G. J.
, and
Li
,
Z. M.
,
2015
, “
Simultaneous Reinforcement and Toughening of Carbon Nanotube/Cellulose Conductive Nanocomposite Films by Interfacial Hydrogen Bonding
,”
ACS Sustainable Chem. Eng.
,
3
(
2
), pp.
317
324
.
235.
Yamakawa
,
A.
,
Suzuki
,
S.
,
Oku
,
T.
,
Enomoto
,
K.
,
Ikeda
,
M.
,
Rodrigue
,
J.
,
Tateiwa
,
K.
,
Terada
,
Y.
,
Yano
,
H.
, and
Kitamura
,
S.
,
2017
, “
Nanostructure and Physical Properties of Cellulose Nanofiber-Carbon Nanotube Composite Films
,”
Carbohydr. Polym.
,
171
, pp.
129
135
.
236.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nat. Mater.
,
6
(
3
), pp.
183
191
.
237.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
238.
Becerril
,
H. A.
,
Mao
,
J.
,
Liu
,
Z.
,
Stoltenberg
,
R. M.
,
Bao
,
Z.
, and
Chen
,
Y.
,
2008
, “
Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors
,”
ACS Nano
,
2
(
3
), pp.
463
470
.
239.
Eda
,
G.
,
Fanchini
,
G.
, and
Chhowalla
,
M.
,
2008
, “
Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material
,”
Nat. Nanotechnol.
,
3
(
5
), pp.
270
274
.
240.
Wang
,
S. J.
,
Geng
,
Y.
,
Zheng
,
Q.
, and
Kim
,
J. K.
,
2010
, “
Fabrication of Highly Conducting and Transparent Graphene Films
,”
Carbon
,
48
(
6
), pp.
1815
1823
.
241.
Chen
,
Y.
,
Zhang
,
X.
,
Yu
,
P.
, and
Ma
,
Y.
,
2009
, “
Stable Dispersions of Graphene and Highly Conducting Graphene Films: A New Approach to Creating Colloids of Graphene Monolayers
,”
Chem. Commun.
, (
30
), pp.
4527
4529
.
242.
Lee
,
V.
,
Whittaker
,
L.
,
Jaye
,
C.
,
Baroudi
,
K. M.
,
Fischer
,
D. A.
, and
Banerjee
,
S.
,
2009
, “
Large-Area Chemically Modified Graphene Films: Electrophoretic Deposition and Characterization by Soft X-Ray Absorption Spectroscopy
,”
Chem. Mater.
,
21
(
16
), pp.
3905
3916
.
243.
Zheng
,
Q.
,
Ip
,
W. H.
,
Lin
,
X.
,
Yousefi
,
N.
,
Yeung
,
K. K.
,
Li
,
Z.
, and
Kim
,
J. K.
,
2011
, “
Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly
,”
ACS Nano
,
5
(
7
), pp.
6039
6051
.
244.
Lin
,
X.
,
Jia
,
J.
,
Yousefi
,
N.
,
Shen
,
X.
, and
Kim
,
J. K.
,
2013
, “
Excellent Optoelectrical Properties of Graphene Oxide Thin Films Deposited on a Flexible Substrate by Langmuir–Blodgett Assembly
,”
J. Mater. Chem. C
,
1
(
41
), pp.
6869
6877
.
245.
Li
,
X.
,
Levy
,
C.
, and
Elaadil
,
L.
,
2008
, “
Multiwalled Carbon Nanotube Film for Strain Sensing
,”
Nanotechnology
,
19
(
4
), p.
045501
.
246.
Park
,
S.
,
An
,
J.
,
Piner
,
R. D.
,
Jung
,
I.
,
Yang
,
D.
,
Velamakanni
,
A.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2008
, “
Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets
,”
Chem. Mater.
,
20
(
21
), pp.
6592
6594
.
247.
Compton
,
O. C.
,
Dikin
,
D. A.
,
Putz
,
K. W.
,
Brinson
,
L. C.
, and
Nguyen
,
S. T.
,
2010
, “
Electrically Conductive ‘Alkylated’ Graphene Paper Via Chemical Reduction of Amine-Functionalized Graphene Oxide Paper
,”
Adv. Mater.
,
22
(
8
), pp.
892
896
.
248.
Zheng
,
Q. B.
,
Gudarzi
,
M. M.
,
Wang
,
S. J.
,
Geng
,
Y.
,
Li
,
Z.
, and
Kim
,
J. K.
,
2011
, “
Improved Electrical and Optical Characteristics of Transparent Graphene Thin Films Produced by Acid and Doping Treatments
,”
Carbon
,
49
(
9
), pp.
2905
2916
.
249.
Peng
,
L.
,
Xu
,
Z.
,
Liu
,
Z.
,
Guo
,
Y.
,
Li
,
P.
, and
Gao
,
C.
,
2017
, “
Ultrahigh Thermal Conductive Yet Superflexible Graphene Films
,”
Adv. Mater.
,
29
(
27
), p.
1700589
.
250.
Shen
,
B.
,
Zhai
,
W.
, and
Zheng
,
W.
,
2014
, “
Ultrathin Flexible Graphene Film: An Excellent Thermal Conducting Material With Efficient EMI Shielding
,”
Adv. Funct. Mater.
,
24
(
28
), pp.
4542
4548
.
251.
Song
,
W. L.
,
Fan
,
L. Z.
,
Cao
,
M. S.
,
Lu
,
M. M.
,
Wang
,
C. Y.
,
Wang
,
J.
,
Chen
,
T. T.
,
Li
,
Y.
,
Hou
,
Z. L.
,
Liu
,
J.
, and
Sun
,
Y. P.
,
2014
, “
Facile Fabrication of Ultrathin Graphene Papers for Effective Electromagnetic Shielding
,”
J. Mater. Chem. C
,
2
(
25
), pp.
5057
5064
.
252.
Kumar
,
P.
,
Shahzad
,
F.
,
Yu
,
S.
,
Hong
,
S. M.
,
Kim
,
Y. H.
, and
Koo
,
C. M.
,
2015
, “
Large-Area Reduced Graphene Oxide Thin Film With Excellent Thermal Conductivity and Electromagnetic Interference Shielding Effectiveness
,”
Carbon
,
94
, pp.
494
500
.
253.
Nair
,
R. R.
,
Wu
,
H. A.
,
Jayaram
,
P. N.
,
Grigorieva
,
I. V.
, and
Geim
,
A. K.
,
2012
, “
Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes
,”
Science
,
335
(
6067
), pp.
442
444
.
254.
Joshi
,
R.,K.
,
Carbone
,
P.
,
Wang
,
F. C.
,
Kravets
,
V. G.
,
Su
,
Y.
,
Grigorieva
,
I. V.
,
Wu
,
H. A.
,
Geim
,
A. K.
, and
Nair
,
R. R.
,
2014
, “
Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes
,”
Science
,
343
(
6172
), pp.
752
754
.
255.
Wang
,
X.
,
Zhi
,
L.
, and
Müllen
,
K.
,
2008
, “
Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells
,”
Nano Lett.
,
8
(
1
), pp.
323
327
.
256.
Wang
,
X.
,
Zhi
,
L.
,
Tsao
,
N.
,
Tomović
,
Ž.
,
Li
,
J.
, and
Müllen
,
K.
,
2008
, “
Transparent Carbon Films as Electrodes in Organic Solar Cells
,”
Angew. Chem. Int. Ed.
,
47
(
16
), pp.
2990
2992
.
257.
Park
,
S.
,
Lee
,
K. S.
,
Bozoklu
,
G.
,
Cai
,
W.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2008
, “
Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties Via Chemical Cross-Linking
,”
ACS Nano
,
2
(
3
), pp.
572
578
.
258.
Ranjbartoreh
,
A. R.
,
Wang
,
B.
,
Shen
,
X.
, and
Wang
,
G.
,
2011
, “
Advanced Mechanical Properties of Graphene Paper
,”
J. Appl. Phys.
,
109
(
1
), p.
014306
.
259.
Lin
,
X.
,
Shen
,
X.
,
Zheng
,
Q.
,
Yousefi
,
N.
,
Ye
,
L.
,
Mai
,
Y. W.
, and
Kim
,
J. K.
,
2012
, “
Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultralarge Graphene Oxide Sheets
,”
ACS Nano
,
6
(
12
), pp.
10708
10719
.
260.
Ye
,
S.
,
Chen
,
B.
, and
Feng
,
J.
,
2015
, “
Fracture Mechanism and Toughness Optimization of Macroscopic Thick Graphene Oxide Film
,”
Sci. Rep.
,
5
, p.
13102
.
261.
Tian
,
Y.
,
Cao
,
Y.
,
Wang
,
Y.
,
Yang
,
W.
, and
Feng
,
J.
,
2013
, “
Realizing Ultrahigh Modulus and High Strength of Macroscopic Graphene Oxide Papers Through Crosslinking of Mussel-Inspired Polymers
,”
Adv. Mater.
,
25
(
21
), pp.
2980
2983
.
262.
Zhang
,
M.
,
Huang
,
L.
,
Chen
,
J.
,
Li
,
C.
, and
Shi
,
G.
,
2014
, “
Ultratough, Ultrastrong, and Highly Conductive Graphene Films With Arbitrary Sizes
,”
Adv. Mater.
,
26
(
45
), pp.
7588
7592
.
263.
Cui
,
W.
,
Li
,
M.
,
Liu
,
J.
,
Wang
,
B.
,
Zhang
,
C.
,
Jiang
,
L.
, and
Cheng
,
Q.
,
2014
, “
A Strong Integrated Strength and Toughness Artificial Nacre Based on Dopamine Cross-Linked Graphene Oxide
,”
ACS Nano
,
8
(
9
), pp.
9511
9517
.
264.
An
,
Z.
,
Compton
,
O. C.
,
Putz
,
K. W.
,
Brinson
,
L. C.
, and
Nguyen
,
S. T.
,
2011
, “
Bio-Inspired Borate Cross-Linking in Ultra-Stiff Graphene Oxide Thin Films
,”
Adv. Mater.
,
23
(
33
), pp.
3842
3846
.
265.
Liu
,
X.
,
Zhang
,
T.
,
Pang
,
K.
,
Duan
,
Y.
, and
Zhang
,
J.
,
2016
, “
Graphene Oxide/Cellulose Composite Films With Enhanced UV-Shielding and Mechanical Properties Prepared in NAOH/Urea Aqueous Solution
,”
RSC Adv.
,
6
(
77
), pp.
73358
73364
.
266.
Phiri
,
J.
,
Johansson
,
L. S.
,
Gane
,
P.
, and
Maloney
,
T. C.
,
2018
, “
Co-Exfoliation and Fabrication of Graphene Based Microfibrillated Cellulose Composites–Mechanical and Thermal Stability and Functional Conductive Properties
,”
Nanoscale
,
10
(
20
), pp.
9569
9582
.
267.
Han
,
D.
,
Yan
,
L.
,
Chen
,
W.
,
Li
,
W.
, and
Bangal
,
P. R.
,
2011
, “
Cellulose/Graphite Oxide Composite Films With Improved Mechanical Properties Over a Wide Range of Temperature
,”
Carbohydr. Polym.
,
83
(
2
), pp.
966
972
.
268.
Huang
,
H. D.
,
Liu
,
C. Y.
,
Li
,
D.
,
Chen
,
Y. H.
,
Zhong
,
G. J.
, and
Li
,
Z. M.
,
2014
, “
Ultra-Low Gas Permeability and Efficient Reinforcement of Cellulose Nanocomposite Films by Well-Aligned Graphene Oxide Nanosheets
,”
J. Mater. Chem. A
,
2
(
38
), pp.
15853
15863
.
269.
Huang
,
Q.
,
Xu
,
M.
,
Su
,
R.
, and
Wang
,
X.
,
2016
, “
Large Scale Preparation of Graphene Oxide/Cellulose Paper With Improved Mechanical Performance and Gas Barrier Properties by Conventional Papermaking Method
,”
Ind. Crops Prod.
,
85
, pp.
198
203
.
270.
Malho
,
J. M.
,
Laaksonen
,
P.
,
Walther
,
A.
,
Ikkala
,
O.
, and
Linder
,
M. B.
,
2012
, “
Facile Method for Stiff, Tough, and Strong Nanocomposites by Direct Exfoliation of Multilayered Graphene Into Native Nanocellulose Matrix
,”
Biomacromolecules
,
13
(
4
), pp.
1093
1099
.
271.
Wang
,
B.
,
Lou
,
W.
,
Wang
,
X.
, and
Hao
,
J.
,
2012
, “
Relationship Between Dispersion State and Reinforcement Effect of Graphene Oxide in Microcrystalline Cellulose–Graphene Oxide Composite Films
,”
J. Mater. Chem.
,
22
(
25
), pp.
12859
12866
.
272.
Dang
,
L. N.
, and
Seppälä
,
J.
,
2015
, “
Electrically Conductive Nanocellulose/Graphene Composites Exhibiting Improved Mechanical Properties in High-Moisture Condition
,”
Cellulose
,
22
(
3
), pp.
1799
1812
.
273.
Wu
,
X.
,
Moon
,
R. J.
, and
Martini
,
A.
,
2013
, “
Atomistic Simulation of Frictional Sliding Between Cellulose Iβ Nanocrystals
,”
Tribol. Lett.
,
52
(
3
), pp.
395
405
.
274.
Sinko
,
R.
, and
Keten
,
S.
,
2014
, “
Effect of Moisture on the Traction-Separation Behavior of Cellulose Nanocrystal Interfaces
,”
Appl. Phys. Lett.
,
105
(
24
), p.
243702
.
275.
Qin
,
X.
,
Feng
,
S.
,
Meng
,
Z.
, and
Keten
,
S.
,
2017
, “
Optimizing the Mechanical Properties of Cellulose Nanopaper Through Surface Energy and Critical Length Scale Considerations
,”
Cellulose
,
24
(
8
), pp.
3289
3299
.
276.
Shishehbor
,
M.
, and
Zavattieri
,
P. D.
,
2019
, “
Effects of Interface Properties on the Mechanical Properties of Bio-Inspired Cellulose Nanocrystal (CNC)-Based Materials
,”
J. Mech. Phys. Solids
,
124
, pp.
871
896
.
277.
Kulachenko
,
A.
,
Denoyelle
,
T.
,
Galland
,
S.
, and
Lindström
,
S. B.
,
2012
, “
Elastic Properties of Cellulose Nanopaper
,”
Cellulose
,
19
(
3
), pp.
793
807
.
278.
Borodulina
,
S.
,
Motamedian
,
H. R.
, and
Kulachenko
,
A.
,
2018
, “
Effect of Fiber and Bond Strength Variations on the Tensile Stiffness and Strength of Fiber Networks
,”
Int. J. Solids Struct.
,
154
, pp.
19
32
.
279.
Mao
,
R.
,
Goutianos
,
S.
,
Tu
,
W.
,
Meng
,
N.
,
Chen
,
S.
, and
Peijs
,
T.
,
2017
, “
Modelling the Elastic Properties of Cellulose Nanopaper
,”
Mater. Des.
,
126
, pp.
183
189
.
280.
Goutianos
,
S.
,
Mao
,
R.
, and
Peijs
,
T.
,
2018
, “
Effect of Inter-Fibre Bonding on the Fracture of Fibrous Networks With Strong Interactions
,”
Int. J. Solids Struct.
,
136–137
, pp.
271
278
.
281.
Deogekar
,
S.
, and
Picu
,
R. C.
,
2018
, “
On the Strength of Random Fiber Networks
,”
J. Mech. Phys. Solids
,
116
, pp.
1
16
.
282.
Sastry
,
A. M.
,
Cheng
,
X.
, and
Wang
,
C. W.
,
1998
, “
Mechanics of Stochastic Fibrous Networks
,”
J. Thermoplast. Compos. Mater.
,
11
(
3
), pp.
288
296
.
283.
Ostoja-Starzewski
,
M.
, and
Stahl
,
D. C.
,
2000
, “
Random Fiber Networks and Special Elastic Orthotropy of Paper
,”
J. Elasticity
,
60
(
2
), pp.
131
149
.
284.
Åström
,
J. A.
,
Mäkinen
,
J. P.
,
Alava
,
M. J.
, and
Timonen
,
J.
,
2000
, “
Elasticity of Poissonian Fiber Networks
,”
Phys. Rev. E
,
61
(
5
), p.
5550
.
285.
Wang
,
C. W.
,
Berhan
,
L.
, and
Sastry
,
A. M.
,
2000
, “
Structure, Mechanics and Failure of Stochastic Fibrous Networks—Part I: Microscale Considerations
,”
ASME J. Eng. Mater. Technol.
,
122
(
4
), pp.
450
459
.
286.
Wang
,
C. W.
, and
Sastry
,
A. M.
,
2000
, “
Structure, Mechanics and Failure of Stochastic Fibrous Networks—Part II: Network Simulations and Application
,”
ASME J. Eng. Mater. Technol.
,
122
(
4
), pp.
460
468
.
287.
Bronkhorst
,
C. A.
,
2003
, “
Modelling Paper as a Two-Dimensional Elastic-Plastic Stochastic Network
,”
Int. J. Solids Struct.
,
40
(
20
), pp.
5441
5454
.
288.
Wu
,
X. F.
, and
Dzenis
,
Y. A.
,
2005
, “
Elasticity of Planar Fiber Networks
,”
J. Appl. Phys.
,
98
(
9
), p.
093501
.
289.
Lee
,
Y.
, and
Jasiuk
,
I.
,
2013
, “
Apparent Elastic Properties of Random Fiber Networks
,”
Comput. Mater. Sci.
,
79
, pp.
715
723
.
290.
Hägglund
,
R.
, and
Isaksson
,
P.
,
2008
, “
On the Coupling Between Macroscopic Material Degradation and Interfiber Bond Fracture in an Idealized Fiber Network
,”
Int. J. Solids Struct.
,
45
(
3–4
), pp.
868
878.
291.
Kulachenko
,
A.
, and
Uesaka
,
T.
,
2012
, “
Direct Simulations of Fiber Network Deformation and Failure
,”
Mech. Mater.
,
51
, pp.
1
14
.
292.
Lavrykov
,
S.
,
Lindström
,
S. B.
,
Singh
,
K. M.
, and
Ramarao
,
B. V.
,
2012
, “
3D Network Simulations of Paper Structure
,”
Nordic Pulp Paper Res. J.
,
27
(
2
), pp.
256
263
.
293.
Bosco
,
E.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2017
, “
Asymptotic Homogenization of Hygro-Thermo-Mechanical Properties of Fibrous Networks
,”
Int. J. Solids Struct.
,
115
, pp.
180
189
.
294.
Bosco
,
E.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2017
, “
Hygro-Mechanical Properties of Paper Fibrous Networks Through Asymptotic Homogenization and Comparison With Idealized Models
,”
Mech. Mater.
,
108
, pp.
11
20
.
295.
Liu
,
J. X.
,
Chen
,
Z. T.
,
Wang
,
H.
, and
Li
,
K. C.
,
2011
, “
Elasto-Plastic Analysis of Influences of Bond Deformability on the Mechanical Behavior of Fiber Networks
,”
Theor. Appl. Fract. Mech.
,
55
(
2
), pp.
131
139
.
296.
Isaksson
,
P.
, and
Hägglund
,
R.
,
2009
, “
Structural Effects on Deformation and Fracture of Random Fiber Networks and Consequences on Continuum Models
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2320
2329
.
297.
Liu
,
J. X.
,
Chen
,
Z. T.
, and
Li
,
K. C.
,
2010
, “
A 2-D Lattice Model for Simulating the Failure of Paper
,”
Theor. Appl. Fract. Mech.
,
54
(
1
), pp.
1
10
.
298.
Broedersz
,
C. P.
,
Mao
,
X.
,
Lubensky
,
T. C.
, and
MacKintosh
,
F. C.
,
2011
, “
Criticality and Isostaticity in Fibre Networks
,”
Nat. Phys.
,
7
(
12
), pp.
983
988
.
299.
Beex
,
L. A. A.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2014
, “
A Multiscale Quasicontinuum Method for Lattice Models With Bond Failure and Fiber Sliding
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
108
122
.
300.
Das
,
M.
,
MacKintosh
,
F. C.
, and
Levine
,
A. J.
,
2007
, “
Effective Medium Theory of Semiflexible Filamentous Networks
,”
Phys. Rev. Lett.
,
99
(
3
), p.
038101
.
301.
Wilbrink
,
D. V.
,
Beex
,
L. A. A.
, and
Peerlings
,
R. H. J.
,
2013
, “
A Discrete Network Model for Bond Failure and Frictional Sliding in Fibrous Materials
,”
Int. J. Solids Struct.
,
50
(
9
), pp.
1354
1363
.
302.
Beex
,
L. A. A.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2011
, “
A Quasicontinuum Methodology for Multiscale Analyses of Discrete Microstructural Models
,”
Int. J. Numer. Methods Eng.
,
87
(
7
), pp.
701
718
.
303.
Beex
,
L. A. A.
,
Peerlings
,
R. H. J.
, and
Geers
,
M. G. D.
,
2014
, “
A Multiscale Quasicontinuum Method for Dissipative Lattice Models and Discrete Networks
,”
J. Mech. Phys. Solids
,
64
, pp.
154
169
.
304.
Bosco
,
E.
,
Bastawrous
,
M. V.
,
Peerlings
,
R. H.
,
Hoefnagels
,
J. P.
, and
Geers
,
M. G.
,
2015
, “
Bridging Network Properties to the Effective Hygro-Expansivity of Paper: Experiments and Modelling
,”
Philos. Mag.
,
95
(
28–30
), pp.
3385
3401
.
305.
Bosco
,
E.
,
Peerlings
,
R. H.
, and
Geers
,
M. G.
,
2015
, “
Predicting Hygro-Elastic Properties of Paper Sheets Based on an Idealized Model of the Underlying Fibrous Network
,”
Int. J. Solids Struct.
,
56
, pp.
43
52
.
306.
Persson
,
J.
, and
Isaksson
,
P.
,
2013
, “
A Particle-Based Method for Mechanical Analyses of Planar Fiber-Based Materials
,”
Int. J. Numer. Methods Eng.
,
93
(
11
), pp.
1216
1234
.
307.
Persson
,
J.
, and
Isaksson
,
P.
,
2014
, “
A Mechanical Particle Model for Analyzing Rapid Deformations and Fracture in 3D Fiber Materials With Ability to Handle Length Effects
,”
Int. J. Solids Struct.
,
51
(
11–12
), pp.
2244
2251
.
308.
Mayo
,
S. L.
,
Olafson
,
B. D.
, and
Goddard
,
W. A.
,
1990
, “
DREIDING: A Generic Force Field for Molecular Simulations
,”
J. Phys. Chem.
,
94
(
26
), pp.
8897
8909
.
309.
Cox
,
H. L.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
British J. Appl. Phys.
,
3
(
3
), pp.
72
79
.
310.
Martoïa
,
F.
,
Dumont
,
P. J. J.
,
Orgéas
,
L.
,
Belgacem
,
M. N.
, and
Putaux
,
J. L.
,
2016
, “
On the Origins of the Elasticity of Cellulose Nanofiber Nanocomposites and Nanopapers: A Micromechanical Approach
,”
RSC Adv.
,
6
(
53
), pp.
47258
47271
.
311.
Cordier
,
P.
,
Tournilhac
,
F.
,
Soulié-Ziakovic
,
C.
, and
Leibler
,
L.
,
2008
, “
Self-Healing and Thermoreversible Rubber From Supramolecular Assembly
,”
Nature
,
451
(
7181
), pp.
977
980
.
312.
Chen
,
Y.
,
Kushner
,
A. M.
,
Williams
,
G. A.
, and
Guan
,
Z.
,
2012
, “
Multiphase Design of Autonomic Self-Healing Thermoplastic Elastomers
,”
Nat. Chem.
,
4
(
6
), pp.
467
472
.
313.
Yanagisawa
,
Y.
,
Nan
,
Y.
,
Okuro
,
K.
, and
Aida
,
T.
,
2018
, “
Mechanically Robust, Readily Repairable Polymers Via Tailored Noncovalent Cross-Linking
,”
Science
,
359
(
6371
), pp.
72
76
.
314.
Song
,
J.
,
Chen
,
C.
,
Zhu
,
S.
,
Zhu
,
M.
,
Dai
,
J.
,
Ray
,
U.
,
Li
,
Y.
,
Kuang
,
Y.
,
Li
,
Y.
,
Quispe
,
N.
,
Yao
,
Y.
,
Gong
,
A.
,
Leiste
,
U. H.
,
Bruck
,
H. A.
,
Zhu
,
J. Y.
,
Vellore
,
A.
,
Li
,
H.
,
Minus
,
M. L.
,
Jia
,
Z.
,
Martini
,
A.
,
Li
,
T.
, and
Hu
,
L.
,
2018
, “
Processing Bulk Natural Wood Into a High-Performance Structural Material
,”
Nature
,
554
(
7691
), pp.
224
228
.
315.
Li
,
Y.
,
Vasileva
,
E.
,
Sychugov
,
I.
,
Popov
,
S.
, and
Berglund
,
L.
,
2018
, “
Optically Transparent Wood: Recent Progress, Opportunities, and Challenges
,”
Adv. Opt. Mater.
,
6
(
14
), p.
1800059
.
You do not currently have access to this content.