Turbulent Flow Around a Bluff Rectangular Plate. Part I: Experimental Investigation

[+] Author and Article Information
N. Djilali

Department of Mechanical Engineering, University of Victoria, Victoria, Canada V8W 3P6

I. S. Gartshore

Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada V6T1W5

J. Fluids Eng 113(1), 51-59 (Mar 01, 1991) (9 pages) doi:10.1115/1.2926496 History: Received August 08, 1989; Online May 23, 2008


Measurements are reported for the separted reattaching flow around a long rectangular plate placed at zero incidence in a low-turbulence stream. This laboratory configuration, chosen for its geometric simplicity, exhibits all of the important features of two-dimensional flow separation with reattachment. Conventional hot-wire anemometry, pulsed-wire anemometry and pulsed-wire surface shear stress probes were used to measure the mean and fluctuating flow field at a Reynolds number, based on plate thickness, of 5 × 104 . The separated shear layer appears to behave like a conventional mixing layer over the first half of the separation bubble, where it exhibits an approximately constant growth rate and a linear variation of characteristic frequencies and integral timescales. The characteristics of the shear layer in the second half of the bubble are radically altered by the unsteady reattachment process. Much higher turbulent intensities and lower growth rates are encountered there, and, in agreement with other reattaching flow studies, a low frequency motion can be detected.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In