Effects of the Axisymmetric Contraction Shape on Incompressible Turbulent Flow

[+] Author and Article Information
A. K. M. F. Hussain, V. Ramjee

Mechanical Engineering Department, University of Houston, Houston, Tex.

J. Fluids Eng 98(1), 58-68 (Mar 01, 1976) (11 pages) doi:10.1115/1.3448210 History: Received January 20, 1975; Online October 12, 2010


The performance characteristics of four different axisymmetric contraction shapes with the same contraction ratio are experimentally investigated for incompressible flow. The pre- and postcontraction mean and turbulent velocity profiles and spectra, and the variation of the mean and turbulent velocities along the axis as a function of local contraction ratio and axial length are presented in this paper. The results show that all the nozzles are of essentially equal effectiveness as far as the core flow in the exit plane is concerned. But the mean and turbulence characteristics of the exit boundary layer, the upstream influence of the contraction, and the departure from equipartition within the nozzle vary significantly with the contraction shape. The data demonstrate the inadequacy of the Batchelor-Proudman-Ribner-Tucker theory in predicting the effect of a contraction on the turbulence structure. These data are of interest in wind tunnel and nozzle design, and in boundary layer prediction.

Copyright © 1976 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In