On the Equilibrium of Cavitation Nuclei in Liquid-Gas Solutions

[+] Author and Article Information
Y. S. Cha

Components Technology Division, Argonne National Laboratory, Argonne, Ill.

J. Fluids Eng 103(3), 425-430 (Sep 01, 1981) (6 pages) doi:10.1115/1.3240804 History: Received February 11, 1980; Online October 26, 2009


The stability of a spherical bubble in a two-component two-phase system is examined by employing the thermodynamic theory of dilute solutions. It is shown that a bubble can remain in a state of stable equilibrium provided that the ratio of the total number of moles of the solute to the total number of moles of the solvent in the system is not extremely small and that the system pressure falls between an upper bound (dissolution limit) and a lower bound (cavitation limit). The results of the analysis provide a theoretical basis for the persistence of microbubbles in a saturated liquid-gas solution. Thus to a certain extent, the results also help to resolve the dilemma that exists in the field of cavitation due to (1) the necessity of postulating the existence of microbubbles; and (2) the lack of theoretical justification for the persistence of such bubbles in a liquid.

Copyright © 1981 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In