Statistical Analysis of Turbulent Two-Phase Pipe Flow

[+] Author and Article Information
S. K. Wang, S. J. Lee, O. C. Jones, R. T. Lahey

Department of Nuclear Engineering, & Engineering Physics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590

J. Fluids Eng 112(1), 89-95 (Mar 01, 1990) (7 pages) doi:10.1115/1.2909374 History: Received September 22, 1986; Online May 23, 2008


The statistical characteristics of turbulent two-phase pipe flow have been evaluated. In particular, the autocorrelation functions and the power spectral density functions of the axial turbulence fluctuations in the liquid phase were determined. The high frequency content of the power spectrum in bubbly two-phase pipe flow was found to be significantly larger than in single-phase pipe flow and, in agreement with previous studies of homogeneous two-phase flows (Lance et al., 1983), diminished asymptotically with a characteristic −8/3 slope at high frequency. The power spectrum and the autocorrelation functions in two-phase pipe flow, although distinctively different from those in single-phase pipe flow, were insensitive to the local void fraction and the mean liquid velocity when plotted against wave number and spatial separation, respectively. Finally, the dissipation scale, determined from the shape of the autocorrelation function, indicated that the turbulent dissipation rate in two-phase pipe flow was significantly greater than that in single-phase pipe flow.

Copyright © 1990 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In