Wall Pressure and Shear Stress Variations in a 90-Deg Bifurcation During Pulsatile Laminar Flow

[+] Author and Article Information
J. M. Khodadadi

Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341

J. Fluids Eng 113(1), 111-115 (Mar 01, 1991) (5 pages) doi:10.1115/1.2926480 History: Received February 21, 1990; Online May 23, 2008


Wall pressure distribution and shear stress fields for pulsatile laminar flow in a 90-degree bifurcation with rectangular cross sections are evaluated using the results of the numerical solution of the Navier-Stokes equation. The extent of the adverse pressure gradient on the bottom wall of the main duct and the upstream wall of the branch closely correlate to the behavior of the two dynamic recirculation zones which are formed on these two walls. Multiple zones of high and low shear stresses at various sites in the bifurcation are observed. The extent of the fluctuations of the maximum and minimum shear stress is identified. Next-to-the-wall laser Doppler anemometer velocity measurements are used to estimate the shear stress distribution on the walls. In general, qualitative agreement between the experimental and computed wall shear stress values is observed. The variation of the wall shear stress in the vicinity of the branch is discussed in light of the highly perturbed flow field.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In