Aerodynamic Sensitivity Analysis Methods for the Compressible Euler Equations

[+] Author and Article Information
Oktay Baysal, Mohamed E. Eleshaky

Mechanical Engineering and Mechanics Department, Old Dominion University, Norfolk, VA 23529-0247

J. Fluids Eng 113(4), 681-688 (Dec 01, 1991) (8 pages) doi:10.1115/1.2926534 History: Received October 09, 1990; Online May 23, 2008


A mathematical formulation is developed for aerodynamic sensitivity coefficients based on a discretized form of the compressible, two-dimensional Euler equations. A brief motivating introduction to the aerodynamic sensitivity analysis and the reasons behind an integrated flow/sensitivity analysis for design algorithms are presented. Two approaches to determine the aerodynamic sensitivity coefficients, namely, the finite difference approach, and the quasi-analytical approach are discussed with regards to their relative accuracies and involved computational efforts. In the quasi-analytical approach, the direct and the adjoint variable methods are formulated and assessed. Also, several methods to solve the system of linear algebraic equations, that arises in the quasi-analytical approach, are investigated with regards to their accuracies, computational time and memory requirements. A new flow prediction concept, which is an outcome of the direct method in the quasi-analytical approach, is developed and illustrated with an example. Surface pressure coefficient distributions of a nozzle-afterbody configuration obtained from the predicted flow-field solution are compared successfully with their corresponding values obtained from a flowfield analysis code and the experimental data.

Copyright © 1991 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In