Cavitation Nuclei and Bubble Formation—A Dynamic Liquid-Solid Interface Problem

[+] Author and Article Information
Knud A. Mo̸rch

Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

J. Fluids Eng 122(3), 494-498 (May 02, 2000) (5 pages) doi:10.1115/1.1287506 History: Received January 17, 2000; Revised May 02, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Harvey,  E. N., Barnes,  D. K., McElroy,  W. D., Peace,  D. C., and Cooper,  K. W., 1944, “Bubble Formation in Animals. I. Physical Factors,” J. Cell. Comp. Physiol., 24, pp. 1–22.
Mo̸rch, K. A., 1992, “A Molecular Approach to Cavitation Inception,” 2éme Journees Cavitation. Societe Hydrotechnique de France, Comite Technique—Colloque d’Hydrotechnique, Session No. 144, Paper 1, 18.3.1992.
Mortensen, N. A., Kühle, A., and Mo̸rch, K. A., 1998, “Interfacial Tension in Water at Solid Surfaces,” Proceedings 3rd International Symposium on Cavitation, Michel, J. M., and Kato, H., eds., Grenoble, France, Vol. 1, pp. 87–91.
Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford University Press, Oxford, U.K. and New York.
Crum, L. A., 1980, “Acoustic Cavitation Thresholds in Water,” Cavitation and Inhomogeneities in Underwater Acoustics, Lauterborn, W., ed., Springer Series in Electrophysics, Vol. 4, pp. 84–89, Springer-Verlag, Berlin.
Greenspan,  M., and Tschiegg,  C. E., 1967, “Radiation-Induced Acoustic Cavitation: Apparatus and Some Results,” J. Res. Natl. Bur. Stand., Sect. C, 71C, pp. 299–312.
Israelachvili,  J. N., and Pashley,  R. M., 1983, “Molecular Layering of Water at Surfaces and Origin of Repulsive Hydration Forces,” Nature (London), 306, pp. 249–250.
Xia,  X., Perera,  L., Essmann,  U., and Berkowitz,  M. L., 1995, “The Structure of Water at Platinum/Water Interfaces, Molecular Dynamics Computer Simulations,” Surf. Sci., 335, pp. 401–415.
Minnaert,  M., 1933, “On Musical Air-Bubbles and the Sound of Running Water,” Philos. Mag., 16, pp. 235–248.
Epstein,  P. S., and Plesset,  M. S., 1950, “On the Stability of Gas Bubbles in Liquid-Gas Solutions,” J. Chem. Phys., 18, pp. 1505–1509.
Safar,  M. H., 1968, “Comment on Papers Concerning Rectified Diffusion of Cavitation Bubbles,” J. Acoust. Soc. Am., 43, pp. 1188–1189.
Briggs,  L. J., 1950, “Limiting Negative Pressure of Water,” J. Appl. Phys., 21, pp. 721–722.
Keller, A. P., 1982, Schlussbericht über das Forschungsvorhaben “Beginnende Kavitation, Zugspannungen in Flüssigkeiten,” 2. Teil, Versuchsanstalt für Wasserbau und Wassermengenwirtschaft, der Technischen Universität, München/Obernach, Germany.
Keller, A. P., 1988, “Cavitation Scale Effects,” AGARD Report 827, High Speed Body Motion in Water, NATO.


Grahic Jump Location
Concave solid surface with attached void. The liquid-gas interface is modeled by a dipole superposed by a related monopole in O.
Grahic Jump Location
Resonance map for hemispherical voids in water at concave solid surface elements. p=1⋅105 Pa, σ=0.075 N/m, κ=1.
Grahic Jump Location
Resonance map for spherical segment of angle θo=5 deg
Grahic Jump Location
Resonance map for spherical segment of angle θo=45 deg
Grahic Jump Location
Graph of broad-band resonance conditions in water, relating void attachment radius Ro to segment angle θo and segment sub-volume Vs*



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In