Axial and Secondary Flow Study in a 90 Deg Bifurcation Under Pulsating Conditions Using PIV

[+] Author and Article Information
N. M. Nikolaidis, D. S. Mathioulakis

National Technical University of Athens, Department of Mechanical Engineering, Fluids Section, 9 Heroon Polytechniou, 15710 Zografos, Athens, Greece

J. Fluids Eng 124(2), 505-511 (May 28, 2002) (7 pages) doi:10.1115/1.1470478 History: Received July 27, 2000; Revised November 27, 2001; Online May 28, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Caro,  C. G., Fitz-Gerald,  J. M., and Schroter,  R. C., 1971, “Atheroma and Arterial Wall Shear. Observation, Correlation and Proposal of a Shear Dependent Mass Transfer Mechanism for Atherogenesis,” Proc. R. Soc. London, Ser. B, B177, pp. 109–159.
Ku,  D. N., Giddens,  D. P., Zarins,  C. K., and Glagov,  S., 1985, “Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation,” Rev. Mod. Astron., 5, pp. 293–302.
Fry,  D. L., 1968, “Acute Vascular Endothelial Changes Associated with Increased Blood Velocity Gradients,” Circ. Res., 22, pp. 165–197.
Salzar,  R. S., Thubrikar,  M. J., and Eppink,  R. T., 1995, “Pressure-Induced Mechanical Stress in the Carotid Artery Bifurcation: a Possible Correlation to Atherosclerosis,” J. Biomech., 28(11), pp. 1333–1340.
Chang,  L.-J., and Tarbell,  J. M., 1985, “Numerical Simulation of Fully Developed Sinusoidal and Pulsatile (Physiological) Flow in Curved Tubes,” J. Fluid Mech., 161, pp. 175–198.
Pedersen,  E. M., Yoganathan,  A. P., and Lefebvre,  X. P., 1992, “Pulsatile Flow Visualization in a Model of the Human Abdominal Aorta and Aortic Bifurcation,” J. Biomech., 25(8), pp. 935–944.
Mathioulakis,  D. S., Pappou,  Th., and Tsangaris,  S., 1997, “An Experimental and Numerical Study of a 90° Bifurcation,” Fluid Mech. Res., 19, pp. 1–26.
Schinas,  D., and Mathioulakis,  D. S., 2000, “Pulsating Flow in a 90 Degree Bifurcation,” ASME J. Fluids Eng., 122, pp. 569–575.
Yoganathan,  A. P., Ball,  J., Woo,  Y.-R., Philpot,  E. F., and Sung,  H.-W., 1986, “Steady Flow Velocity Measurements in a Pulmonery Artery Model with Varying Degrees of Pulmonic Stenosis,” J. Biomech., 19(2), pp. 129–146.
Sung,  H.-W., and Yoganathan,  A. P., 1990, “Axial Flow Velocity Patterns in a Normal Human Pulmonery Artery Model: Pulsatile in Vitro Studies,” J. Biomech., 23(3), pp. 201–214.
Dean,  W. R., 1927, “Note on the Motion of Fluid in a Curved Pipe,” Philos. Mag., 4(7), pp. 208–223.
Dean,  W. R., 1928, “The Streamline Motion of Fluid in a Curved Pipe,” Philos. Mag., 5(7), pp. 673–695.
Lyne,  W. H., 1970, “Unsteady Viscous Flow in a Curved Pipe,” J. Fluid Mech., 45, Part 1, pp. 13–31.
Smith,  F. T., 1975, “Pulsatile Flow in Curved Pipes,” J. Fluid Mech., 71, Part 1, pp. 15–42.
Talbot,  L., and Gong,  K. O., 1983, “Pulsatile Entrance Flow in a Curved Pipe,” J. Fluid Mech., 127, pp. 1–25.
Hamakiotes,  C. C., and Berger,  S. A., 1990, “Periodic Flows Through Curved Tubes: the Effect of the Frequency Parameter,” J. Fluid Mech., 210, pp. 353–370.
Rindt,  C. C. M., van Steenhoven,  A. A., Janssen,  J. D., and Vossers,  G., 1991, “Unsteady Entrance Flow in a 90° Curved Tube,” J. Fluid Mech., 226, pp. 445–474.
Sudo,  K., Sumida,  M., and Yamane,  R., 1992, “Secondary Motion of Fully Developed Oscillatory Flow in a Curved Pipe,” J. Fluid Mech., 237, pp. 189–208.
Winters,  K. H., 1987, “A Bifurcation Study of Laminar Flow in a Curved Tube of Rectangular Cross-Section,” J. Fluid Mech., 180, pp. 343–369.
Thangam,  S., and Hur,  N., 1990, “Laminar Secondary Flows in Curved Rectangular Ducts,” J. Fluid Mech., 217, pp. 421–440.
Kao,  H. C., 1992, “Some Aspects of Bifurcation Structure of Laminar Flow in Curved Ducts,” J. Fluid Mech., 243, pp. 519–539.
Kostis, A., and Mathioulakis, D. S., 1997, “Study of Vortical Structures by Means of Particle Image Velocimetry,” Proc. Second Greek-Italian International Conference on New Laser Technologies and Applications, SPIE Vol. 3423, pp. 286–290.
Koutsiaris,  A. G., Mathioulakis,  D. S., and Tsangaris,  S., 1999, “Microscope PIV for Velocity-Field Measurement of Particle Suspensions Flowing Inside Glass Capillaries,” Meas. Sci. Technol., 10, pp. 1037–1046.
Bharadvaj,  B. K., Mahon,  R. F., and Giddens,  D. P., 1982, “Steady Flow in a Model of the Human Carotid Bifurcation, Part-I-Flow Visualization. Part 2-Laser Doppler Anemometer Measurements,” J. Biomech., 15, pp. 349–378.
Pedersen,  E. M., and Yoganathan,  A. P., 1990, “Axial Flow Velocity Patterns in a Normal Human Pulmonary Artery Model: Pulsatile in Vitro Studies,” J. Biomech., 23, pp. 201–214.
Wilder,  M. C., Mathioulakis,  D. S., Poling,  D. R., and Telionis,  D. P., 1996, “The Formation and Internal Structure of Coherent Vortices in the Wake of a Pitching Airfoil,” J. Fluids Struct., 10, pp. 3–20.
Mathioulakis,  D. S., and Telionis,  D. P., 1987, “Velocity and Vorticity Distributions in Periodic Separating Laminar Flow,” J. Fluid Mech., 184, pp. 303–333.
Mathioulakis,  D. S., and Telionis,  D. P., 1989, “Pulsating Flow Over an Ellipse at an Angle of Attack,” J. Fluid Mech., 204, pp. 99–121.
Rindt,  C. C. M., and Steenhoven,  A. A. v., 1996, “Unsteady flow in a Rigid 3-D Model of the Carotid Artery Bifurcation,” ASME J. Biomech. Eng., 118, pp. 90–96.
Perktold,  K., Hofer,  M., Rappitsch,  G., Loew,  M., Kuban,  B. D., and Friedman,  M. H., 1998, “Validated Computation of Physiologic Flow in a Realistic Coronary Artery Branch,” J. Biomech., 31, pp. 217–228.
Ethier,  C. R., Prakash,  S., Steinman,  D. A., Leask,  R. L., Cough,  G. G., and Ojha,  M., 2000, “Steady Flow Separation Patterns in a 45 Degree Junction,” J. Fluid Mech., 411, pp. 1–38.
Komai,  Y., and Tanishita,  K., 1997, “Fully Developed Intermittent Flow in a Curved Tube,” J. Fluid Mech., 347, pp. 263–287.
Perktold,  K., Florian,  H., Hilbert,  D., and Peter,  R., 1988, “Wall Shear Stress Distribution in the Human Carotid Siphon During Pulsatile Flow,” J. Biomech., 21, No. 8, pp. 663–671.
Munson,  B. R., 1975, “Experimental Results for Oscillating Flow in a Curved Pipe,” Phys. Fluids, 18, pp. 1607–1609.


Grahic Jump Location
Bifurcation model. (Dimensions in mm)
Grahic Jump Location
PIV set up. a. Axial flow. b. Secondary flow
Grahic Jump Location
Axial flow-Horizontal part. Velocity vectors and flow rates. (a), (b), (c): Q=2 lt/min,T=88 s,t=76 s, 80 s, 84 s, (d): Q=0.8 lt/min,T=88 s,t=14 s, (e): Q=0.8 lt/min,T=28 s,t=27 s, (f ): Q=2 lt/min,T=11 s,t=0, (g), (h): Q=1.5 lt/min,T=88 s,t=25 s, 30 s  
Grahic Jump Location
Axial flow-vertical part. Velocity vectors and flow rate. (a), (b): Q=2 lt/min, T=11 s, t=4 s, t=7 s.
Grahic Jump Location
Secondary flow. Velocity vectors and flow rates, (a), (b), (c): Q=1 lt/min,T=88 s,t=20 s, 25 s, 29 s, (d), (e): Q=1.5 lt/min, T=88 s, t=20 s, 74 s, (f ), (g): Q=1 lt/min, T=28 s, t=17 s, 23 s, (h): Q=1.5 lt/min, T=11 s, t=8.5 s.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In