The Approximate Deconvolution Model for Large-Eddy Simulation of Compressible Flows With Finite Volume Schemes

[+] Author and Article Information
R. von Kaenel, N. A. Adams, L. Kleiser

ETH Zurich, Institute of Fluid Dynamics, CH-8092 Zurich, Switzerland

J. B. Vos

CFS Engineering SA, PSE-B, CH-1015 Lausanne, Switzerland

J. Fluids Eng 124(4), 829-835 (Dec 04, 2002) (7 pages) doi:10.1115/1.1511167 History: Received March 12, 2002; Revised May 31, 2002; Online December 04, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Dolling,  D. S., 2001, “Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?” AIAA J., 39, p. 1517.
Stolz,  S., and Adams,  N. A., 1999, “An Approximate Deconvolution Procedure for Large-Eddy Simulation,” Phys. Fluids, 11, pp. 1699–1701.
Stolz,  S., Adams,  N. A., and Kleiser,  L., 2001, “An Approximate Deconvolution Model for Large-Eddy Simulation With Application to Incompressible Wall-Bounded Flows,” Phys. Fluids, 13, pp. 997–1015.
Stolz,  S., Adams,  N. A., and Kleiser,  L., 2001, “An Approximate Deconvolution Model for Large-Eddy Simulations of Compressible Flows and Its Application to Shock-Turbulent-Boundary-Layer Interaction,” Phys. Fluids, 13, pp. 2985–3001.
Stolz, S., Adams, N. A., and Kleiser, L., 2000, “LES of Shock-Boundary Layer Interaction With the Approximate Deconvolution Model,” Advances in Turbulence, Proceedings of the 8th European Turbulence Conference, C. Dopazo et al., eds., CIMNE, Barcelona, pp. 715–718.
Deschamps, V., 1988, “Simulation Numérique de la Turbulence Inhomogène Incompressible dans un Écoulement de Canal Plan,” ONERA, TR 1988-5, Cha⁁tillon, France.
Stolz, S., 2000, “Large-Eddy Simulation of Complex Shear Flows Using an Approximate Deconvolution Model,” Diss. ETH No. 13861.
Adams, N. A., 2001, “The Role of Deconvolution and Numerical Discretization in Subgrid-Scale Modeling,” Direct and Large-Eddy Simulation IV, B. Geurts, R. Friedrich, and O. Métais, eds., Kluwer, Dordrecht, The Netherlands.
Domaradzki, J. A., Loh, K. C., and Yee, P. P., 2001, “Large Eddy Simulations Using the Subgrid-Scale Estimation Model and Truncated Navier-Stokes Dynamics,” submitted for publication.
Lesieur,  M., and Métais,  O., 1996, “New Trends in Large-Eddy Simulations of Turbulence,” Annu. Rev. Fluid Mech., 28, p. 45.
Batchelor, G. K., 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, UK.
Lele,  S. K., 1992, “Compact Finite-Difference Schemes With Spectral-Like Resolution,” J. Comput. Phys., 103, p. 16.
Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler Equations by Finite-Volume Methods Using Runge-Kutta Time Stepping Schemes,” AIAA Paper No. 81-1259, July.
Vos, J. B., Leyland, P., Lindberg, P. A., van Kemenade, V., Gacherieu, C., Duquesne, N., Lotstedt, P., Weber, C., Ytterström, A., and Saint Requier, C., 2000, “NSMB Handbook,” Technical Report 4.5, EPF Lausanne, KTH, CERFACS, Aérospatiale, SAAB, EPF Lausanne, Switzerland.
Vos, J. B., Rizzi, A. W., Corjon, A., Chaput, E., and Soinne, E., 1988, “Recent Advances in Aerodynamics Inside the NSMB (Navier-Stokes Multi-Block) Consortium,” AIAA Paper No. AIAA-98-0225.
Ducros,  F., Laporte,  F., Soulères,  T., Guinot,  V., Moinat,  P., and Caruelle,  B., 2000, “High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows,” J. Comput. Phys., 161, pp. 114–139.
Peyret, R., and Taylor, T. D., 1983, Computational Methods for Fluid Flows, Springer-Verlag, New York.
Coleman,  G. N., Kim,  J., and Moser,  R. D., 1995, “A Numerical Study of Turbulent Supersonic Isothermal-Wall Channel Flow,” J. Fluid Mech., 305, pp. 159–183.
Lenormand,  E., Sagaut,  P., Ta Phuoc,  L., and Comte,  P., 2000, “Subgrid-Scale Models for Large-Eddy Simulations of Compressible Wall Bounded Flows,” AIAA J., 38, pp. 1340–1350.
Bardina, J., Ferziger, J. H., and Reynolds, W. C., 1983, “Improved Turbulence Models Based on Large-Eddy Simulation of Homogeneous, Incompressible, Turbulent Flows,” Thermosciences Div., Rept. TF-19, Department of Mechanical Engineering, Stanford University, Stanford, CA.
Bardina,  J., Ferziger,  J. H., and Reynolds,  W. C., 1980, “Improved Subgrid Scale Models for Large-Eddy Simulation,” AIAA J., 80, p. 1357.
Mossi, M., 1999, “Simulation of Benchmark and Industrial Unsteady Compressible Turbulent Fluid Flows,” Thèse EPFL No. 1958.
Garnier,  E., Mossi,  M., Sagaut,  P., Comte,  P., and Deville,  M., 1999, “On the Use of Shock-Capturing Schemes for Large-Eddy Simulation,” J. Comput. Phys., 153, pp. 273–311.
Stolz, S., Adams, N. A., and Kleiser, L., 2002, “The Approximate Deconvolution Model for Compressible Flows: Isotropic Turbulence and Shock-Boundary-Layer Interaction,” R. Friedrich and W. Rodi, eds., Advances in LES of Complex Flows, Kluwer, Dordrecht, The Netherlands.


Grahic Jump Location
Transfer functions, – explicit primary filter for an equidistant mesh, e.g., x or y direction, [[dotted_line]] approximate inverse Q⁁N, [[dashed_line]] secondary filter Q⁁Nċ⁁, for N=5
Grahic Jump Location
Contours of instantaneous wall-normal vorticity ωz in (x,y)-plane at z+≈10, (a) ADM, (b) no-model, (c) DNS; ωz≥0 in light regions, ωz<0 in dark regions
Grahic Jump Location
(a) Mean temperature profile, (b) mean density profile, –DNS, •ADM, – filtered DNS, ○ no-model
Grahic Jump Location
Mean velocity profile, (a) linear plot, (b) van Driest transformed logarithmic plot, –DNS, •ADM, – filtered DNS, ○ no-model, [[dashed_line]]z++5.5
Grahic Jump Location
Velocity fluctuations, (a) streamwise velocity, (b) spanwise velocity, –DNS, •ADM, – filtered DNS, ○ no-model
Grahic Jump Location
(a) Velocity fluctuations in wall-normal direction, (b) Reynolds-stress, –DNS, •ADM, – filtered DNS, ○ no-model



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In