Implicit Turbulence Modeling for High Reynolds Number Flows

[+] Author and Article Information
L. G. Margolin

Center for Nonlinear Studies, Los Alamos National Laboratory, MS B258, Los Alamos, NM 87545e-mail: len@lanl.gov

P. K. Smolarkiewicz

Microscale and Mesoscale Meteorology Division, National Center for Atmospheric Research, Boulder, CO 80307e-mail: smolar@ncar.ucar.edu

A. A. Wyszogrodzki

Institute for Geophysics and Plenetary Physics, Earth and Space Sciences Division, Los Alamos National Laboratory, MS C305, Los Alamos, NM 87545e-mail: wyszog@kokopelli.lanl.gov

J. Fluids Eng 124(4), 862-867 (Dec 04, 2002) (6 pages) doi:10.1115/1.1514210 History: Received March 12, 2002; Revised May 29, 2002; Online December 04, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Clarke, A. C., 1973, Profiles of the Future, Harper & Row, New York, p. 21.
Oran,  E. S., and Boris,  J. P., 1993, “Computing Turbulent Shear Flows—A Convenient Conspiracy,” Comput. Phys., 7, pp. 523–533.
Porter,  D. H., Pouquet,  A., and Woodward,  P. R., 1994, “Kolmogorov-Like Spectra in Decaying Three-Dimensional Supersonic Flows,” Phys. Fluids, 6, pp. 2133–2142.
Linden,  P. F., Redondo,  J. M., and Youngs,  D. L., 1994, “Molecular Mixing in Rayleigh-Taylor Instability,” J. Fluid Mech., 265, pp. 97–124.
Fureby,  C., and Grinstein,  F. F., 1999, “Monotonically Integrated Large Eddy Simulation of Free Shear Flows,” AIAA J., 37, pp. 544–556.
Smolarkiewicz,  P. K., and Margolin,  L. G., 1998, “MPDATA: A Finite Difference Solver for Geophysical Flows,” J. Comput. Phys., 140, pp. 459–480.
Margolin,  L. G., Smolarkiewicz,  P. K., and Sorbjan,  Z., 1999, “Large Eddy Simulations of Convective Boundary Layers Using Nonoscillatory Differencing,” Physica D, 133, pp. 390–397.
Smolarkiewicz,  P. K., and Margolin,  L. G., 1997, “On Forward-in-Time Differencing for Fluids; An Eulerian/Semi-Lagrangian Nonhydrostatic Model for Stratified Flows,” Atmos.-Ocean., 35, pp. 127–152.
Smolarkiewicz,  P. K., Margolin,  L. G., and Wyszogrodzki,  A. A., 2001, “A Class of Nonhydrostatic Global Models,” J. Atmos. Sci., 58, pp. 349–364.
Margolin,  L. G., and Rider,  W. J., 2001, “A Rationale for Implicit Turbulence Modeling,” Int. J. Numer. Methods Eng., 39, pp. 821–841.
Frisch, U., 1995, Turbulence, The Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, UK.
Herring,  J. R., and Kerr,  R. M., 1993, “Development of Enstrophy and Spectra in Numerical Turbulence,” Phys. Fluids A, 5, pp. 2792–2798.
Kolmogorov,  A. N., 1941, “The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers,” Dokl. Akad. Nauk SSSR, 30, pp. 301–305.
Smolarkiewicz,  P. K., and Margolin,  L. G., 1993, “On Forward-in-Time Differencing for Fluids,” Mon. Weather Rev., 121, pp. 1847–1859.
Smolarkiewicz,  P. K., and Margolin,  L. G., 1994, “Variational Solver for Elliptic Problems in Atmospheric Flows,” Appl. Math. Comput., 4, pp. 527–551.
Prusa,  J. M., Smolarkiewicz,  P. K., and Wyszogrodzki,  A. A., 2001, “Simulations of Gravity Wave Induced Turbulence Using 512 PE CRAY T3E,” Int. J. Appl. Math. Comput. Sci., 11 , pp. 101–115.
Smagorinsky, J., 1993, “Some Historical Remarks on the Use of Nonlinear Viscosities,” Large Eddy Simulation of Complex Engineering and Geophysical Flows, Cambridge University Press, Cambridge, UK, pp. 3–36.
Domaradzki,  J. A., and Loh,  K-C., 1999, “The Subgrid-Scale Estimation Model in the Physical Space Representation,” Phys. Fluids, 11, pp. 2330–2342.
Geurts,  B. J., 1997, “Inverse Modeling for Large-Eddy Simulation,” Phys. Fluids, 9, pp. 3585–3587.
Stolz,  S., and Adams,  N. A., 1999, “An Approximate Deconvolution Procedure for Large-Eddy Simulation,” Phys. Fluids, 11, pp. 1699–1701.
Lohse,  D., and Miller-Groeling,  A., 1995, “Bottleneck Effects in Turbulence: Scaling Phenomena in r-Versus p-space,” Phys. Rev. Lett., 74, pp. 1747–1750.


Grahic Jump Location
Enstrophy history in pseudo-spectral and MPDATA simulations of isotropic decaying turbulence. All simulations use the same resolution of 2563 points.
Grahic Jump Location
MPDATA simulated spectra for zero viscosity at 323,483,643,1283, and 2563 resolutions
Grahic Jump Location
Asymptotic spectra for zero viscosity estimated from simulated spectra in Fig. 2
Grahic Jump Location
Asymptotic spectra for finite viscosities



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In