Nonsteady Supercritical Discharge Through an Orifice

[+] Author and Article Information
George Rudinger

Cornell Aeronautical Laboratory, Inc., Buffalo, N. Y.

J. Basic Eng 83(4), 663-670 (Dec 01, 1961) (8 pages) doi:10.1115/1.3662291 History: Received February 07, 1961; Online November 04, 2011


Previous studies of shock reflection from open-ended duct configurations indicate that a steady discharge is not instantaneously formed and that the effects of this lag may occasionally be important. A theory is available which satisfactorily describes the lag effects in subcritical flow, but its validity for supercritical flow has not previously been verified. Shock-tube experiments are therefore carried out to study the lag effects in supercritical flow from a sharp-edged orifice. The incident shock wave either modifies an initial supercritical discharge, or establishes such a discharge with the gas initially being at rest. Schlieren photographs show a violent transition of the flow downstream of the orifice that lasts several milliseconds. Pressure records taken inside the duct indicate a small, but distinct, pressure rise that also lasts for several milliseconds following the passage of the reflected shock wave. It is shown that this apparent agreement of the transition times is accidental. A method is described to evaluate the effect of boundary-layer growth on the pressure behind the reflected shock wave, and the results indicate that the entire observed pressure rise is accounted for by this effect. Consequently, flow adjustment in the orifice may be considered as instantaneous for all practical purposes.

Copyright © 1961 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In