Fatigue Characteristics of Open-End Thick-Walled Cylinders Under Cyclic Internal Pressure

[+] Author and Article Information
T. E. Davidson, A. N. Reiner

Physical and Mechanical Metallurgy Laboratory, Watervliet Arsenal, Watervliet, N. Y.

R. Eisenstadt

Mechanical Engineering Department, Union College, Schenectady, N. Y.

J. Basic Eng 85(4), 555-565 (Dec 01, 1963) (11 pages) doi:10.1115/1.3656910 History: Received August 06, 1962; Online November 03, 2011


Thick-walled cylinder fatigue data due to cyclic internal pressure for open-end cylinders in the range of 103 to 105 cycles to failure and having a diameter ratio of 1.4 to 2.0 at a nominal yield strength of 160,000 pounds per square inch is presented. Discussed and also presented are the effects of autofrettage on the fatigue characteristics of thick-walled cylinders. Autofrettage substantially enhances fatigue characteristics at stress levels below the corresponding overstrain pressure, the degree of improvement increasing the decreasing stress levels. The rate of improvement in fatigue characteristics increases significantly with diameter ratio in autofrettaged cylinders up to a diameter ratio of 1.8–2.0 and to a much smaller degree in the nonautofrettaged condition. The rate of improvement of fatigue characteristics above 2.0 is the same for both the autofrettaged and nonautofrettaged cases. It is shown that thermal treatment of 675 F for 6 hours after autofrettage does not affect fatigue characteristics and that there is a correlation between the cyclic-stress level and the area and depth of the fatigue crack to the point of ductile rupture. The depth of the fatigue crack decreases with increasing cyclic-stress level. A means for using data from a unidirectional tensile fatigue test to predict the fatigue characteristics of thick-walled cylinders is discussed.

Copyright © 1963 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In