The Turbulent Flow at the Plane of Symmetry of a Collateral Three-Dimensional Boundary Layer

[+] Author and Article Information
F. J. Pierce

Cornell University, Ithaca, N. Y.

J. Basic Eng 86(2), 227-233 (Jun 01, 1964) (7 pages) doi:10.1115/1.3653044 History: Received November 21, 1962; Online November 03, 2011


Momentum integral equations for the turbulent flow at the plane of symmetry of a three-dimensional boundary layer are rigorously derived. The use of orthogonol curvilinear coordinates allows a simple physical interpretation to be given to the terms of the resulting equations. Evaluation and comparison are made between the derived results and earlier works in Cartesian sets and ambiguities are discussed. Results of an experimental program are reported for the case of a plane of symmetry flow in a collateral three-dimensional turbulent boundary layer wherein four different momentum integral equations are examined in predicting boundary-layer growth. As an aside, two common variations of shape parameter equations were also tested to determine their adequacy in application to this case.

Copyright © 1964 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In