On the Tendency to Self-Preservation in Axisymmetric Ducted Jets

[+] Author and Article Information
R. Curtet, F. P. Ricou

Fluid Mechanics Laboratories, University of Grenoble, Grenoble, France

J. Basic Eng 86(4), 765-771 (Dec 01, 1964) (7 pages) doi:10.1115/1.3655947 History: Received March 04, 1964; Online November 03, 2011


If it is assumed that the mean-velocity profiles of a ducted jet are similar in form sufficiently for downstream of the orifice it is possible, as shown in earlier papers [1, 2, 3], to integrate the equations of motion using the boundary-layer approximation and assuming a constant-energy secondary stream. It is necessary to know when and how this limiting profile is reached, and whether a similar tendency to self-preservation of the components of the velocity fluctuations is observed before the jet reaches the duct-wall boundary layer. Measurements have been made in an axisymmetric ducted air jet of the mean and fluctuating velocities, jet width, secondary-stream velocity, ductwall static pressure, and the boundary layer thickness. Results are compared with values predicted by the approximate jet theory. The authors define form factors calculated from measured profiles of mean velocities, of radial and longitudinal components of the velocity fluctuations, and of the shear stress. The variation of these form factors indicates a definite tendency to similarity for the mean velocity profiles; however, departures from similarity persist for the velocity fluctuations to the limit of measurements, about three duct diameters (40 nozzle diameters).

Copyright © 1964 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In