Transverse Oscillations of a Jet in a Jet-Splitter System

[+] Author and Article Information
D. O. Rockwell

Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pa.

J. Basic Eng 94(3), 675-681 (Sep 01, 1972) (7 pages) doi:10.1115/1.3425524 History: Received December 22, 1971; Online October 27, 2010


The fundamental transverse oscillations of a liquid jet which impinged upon a flow splitter were examined for a wide range of dimensionless splitter distance, nozzle exit Reynolds number, and dimensionless frequency. The results are presented in the form of a design map. The data, taken at low nozzle aspect ratio, reveal that fundamental (stage 1) oscillations can exist for Reynolds numbers up to at least 7000. Up to Reynolds numbers of about 3000, the jet behavior is Reynolds number dependent for all values of splitter distance. Beyond Reynolds number of 3000 the jet behavior is independent of Reynolds number. In general, the Strouhal number, based on nozzle exit-splitter distance, decreases with increasing values of splitter distance. Jets issuing from nozzles with no parallel development sections were considered. Jet nozzle shape influences the dimensionless frequency of oscillation in that the effect of a vena contracta formation outside the nozzle exit is to yield a higher value of dimensionless frequency relative to nozzles which produce parallel flow with small boundary layer thickness at the exit. Similar decreases have been found for two-dimensional jets. Of the above findings, the only comparable results for two-dimensional jets are variations in Strouhal number with nozzle exit-splitter distance.

Copyright © 1972 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In