An Experimental Study of Compressible Flow Through Convergent-Conical Nozzles, Including a Comparison With Theoretical Results

[+] Author and Article Information
R. L. Thornock

Propulsion Research Unit, The Boeing Co., Seattle, Wash.

E. F. Brown

Virginia Polytechnic Institute and State University, Blacksburg, Va.

J. Basic Eng 94(4), 926-930 (Dec 01, 1972) (5 pages) doi:10.1115/1.3425591 History: Received June 23, 1971; Online October 27, 2010


Despite the widespread use of convergent-conical nozzles as propulsion nozzles in turbojet aircraft, little attention has been given to the effect of nozzle shape on their propulsive performance. This paper presents the results of an experimental investigation in which the effect of nozzle angle on the internal characteristics of the flow field and on the propulsive performance of convergent conical nozzles was investigated. In addition, a theoretical solution is described which was developed as a part of this investigation. Fifteen, twenty-five, and forty-degree nozzles were tested at pressure ratios from 1.4 to 7.0. Measurements were made of the nozzle discharge coefficient, thrust coefficient, local flow angle, and wall static pressure. The properties of the internal flow field were seen to be affected by the nozzle angle and at pressure ratios less than the choked pressure ratio by the pressure ratio as well. The results of the theoretical analysis substantiate this behavior and are in reasonable agreement with the experimental data.

Copyright © 1972 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In