0
Research Papers: Flows in Complex Systems

Semitheoretical Prediction of the Wetting Characteristics of Aqueous Ionic Liquid Solution on an Aluminum Finned-Tube Desiccant Contactor

[+] Author and Article Information
Niccolo Giannetti

Department of Applied Mechanics and
Aerospace Engineering,
Waseda University,
3-4-1 Okubo,
Shinjuku-ku 169-8555, Tokyo, Japan
e-mail: niccolo@aoni.waseda.jp

Richard Jayson Varela

Graduate School of Fundamental
Science and Engineering,
Waseda University,
Shinjuku-ku 169-8555, Tokyo, Japan
e-mail: rjvarela_2014@fuji.waseda.jp

Hifni Ariyadi

Department of Applied Mechanics and
Aerospace Engineering,
Waseda University,
3-4-1 Okubo,
Shinjuku-ku 169-8555, Tokyo, Japan
e-mail: hifni.ariyadi@aoni.waseda.jp

Seiichi Yamaguchi

Department of Applied Mechanics and
Aerospace Engineering,
Waseda University,
3-4-1 Okubo,
Shinjuku-ku 169-8555, Tokyo, Japan
e-mail: sei_yamaguchi@aoni.waseda.jp

Kiyoshi Saito

Department of Applied Mechanics and
Aerospace Engineering,
Waseda University,
3-4-1 Okubo,
Shinjuku-ku 169-8555, Tokyo, Japan
e-mail: saito@waseda.jp

Xin-Ming Wang

Evonik Japan Co., Ltd.,
2-3-1 Nishi-Shinjuku,
Shinjuku-ku 163-0938, Tokyo, Japan
e-mail: xinming.wang@evonik.com

Hiroshi Nakayama

Energy Applications R&D Center,
Chubu Electric Power Co., Inc.,
20-1 Midori-ku,
Nagoya-shi 459-8522, Aichi, Japan
email: nakayama.hiroshi2@chuden.co.jp

Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received March 8, 2018; final manuscript received July 5, 2018; published online August 6, 2018. Assoc. Editor: Daniel Maynes.

J. Fluids Eng 140(12), 121109 (Aug 06, 2018) (10 pages) Paper No: FE-18-1162; doi: 10.1115/1.4040796 History: Received March 08, 2018; Revised July 05, 2018

This study involves exploring a new design of an internally cooled/heated desiccant contactor by using a new ionic liquid (IL) solution as the sorptive solution. In order to optimize its operative performance, a semitheoretical model based on the principle of minimum energy is developed to predict the film rupture and wetting ability of the IL solution over a comprehensive range of IL mass fraction and flow rates. A first experimental validation of the fundamental equations of the theoretical model is presented and used as a reference to minimize deviations between predicted results and measured data by calibrating dedicated characteristic coefficients. The noteworthy quantitative and qualitative agreement in the whole range of IL mass fractions and flow rates is promising for contributing to the design of optimized system configurations and control strategies.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bejan, A. , 2006, Advanced Engineering Thermodynamics, 3rd ed., Wiley, Hoboken, NJ.
Helmholtz, H. , 1869/1871, “Zur Theorie der stationären Ströme in reibenden Flüssigkeiten, Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg,” Wissenschaftliche Abhandlungen, H. Helmholtz , ed., Vol. 1, Johann Ambrosius Barth, Leipzig, Germany, 1, pp. 223–230.
Hamilton, W. R. , 1835, “Second Essay on a General Method in Dynamics,” Philos. Trans. R. Soc., Part I, 125, pp. 95–144. [CrossRef]
Hamilton, W. R. , 1834, “On a General Method in Dynamics,” Philos. Trans. R. Soc., Part II, 124, pp. 247–308. [CrossRef]
Onsager, L. , 1931, “Reciprocal Relations in Irreversible Processes—Part I,” Phys. Rev., 37(4), pp. 405–426. [CrossRef]
Onsager, L. , 1931, “Reciprocal Relations in Irreversible Processes—Part II,” Phys. Rev., 38(12), pp. 2265–2279. [CrossRef]
Ziman, J. M. , 1956, “The General Variational Principle of Transport Theory,” Can. J. Phys., 34(12A), pp. 1256–1273. [CrossRef]
Prigogine, I. , 1961, “Introduction to Thermodynamics of Irreversible Processes,” Interscience Publishers, 2nd ed., Wiley, New York. [CrossRef]
Bejan, A. , and Lorente, S. , 2008, “Design With Constructal Theory,” Wiley, Hoboken, NJ. [CrossRef]
Kiss, E. , 1994, “On the Validity of the Principle of Minimum Entropy Production,” Period. Polytech. Ser. Chem. Eng., 38(3–4), pp. 183–197.
Reis, A. H. , 2014, “Use and Validity of Principles of Extremum of Entropy Production in the Study of Complex Systems,” Ann. Phys., 346, pp. 22–27. [CrossRef]
Grandy, W. T. , 2008, Entropy and the Time Evolution of Macroscopic Systems, Oxford University Press, New York. [CrossRef]
Zivi, S. M. , 1964, “Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production,” ASME J. Heat Transfer, 86(2), pp. 247–251. [CrossRef]
Giannetti, N. , Kunita, D. , Yamaguchi, S. , and Saito, K. , 2018, “Annular Flow Stability Within Small-Sized Channels,” Int. J. Heat Mass Transfer, 116, pp. 1153–1162. [CrossRef]
Brauner, N. , Rovinsky, J. , and Maron, D. M. , 1996, “Determination of the Interface Curvature in Stratified Two-Phase Systems by Energy Considerations,” Int. J. Multiphase Flow, 22(6), pp. 1167–1185. [CrossRef]
Chakrabarti, D. P. , Das, G. , and Ray, S. , 2005, “Pressure Drop in Liquid-Liquid Two Phase Horizontal Flow: Experiment and Prediction,” Chem. Eng. Technol., 28(9), pp. 1003–1009. [CrossRef]
Paulus, D. M. , and Gaggioli, R. A. , 2004, “Some Observations of Entropy Extrema in Fluid Flow,” Energy, 29(12–15), pp. 2487–2500. [CrossRef]
Dabirian, R. , Thompson, L. , Mohan, R. S. , Shoham, O. , and Avila, C. , 2013, “Prediction of Two-Phase Flow Splitting in Looped Lines Based on Energy Minimization,” SPE Annual Technical Conference and Exhibition, Paper No. SPE-166197-MS, pp. 1–11.
Soto Francés, V. M. , and Pinazo Ojer, J. M. , 2000, “Experimental Study About Heat and Mass Transfer During Absorption of Water by an Aqueous Lithium Bromide Solution,” International ASME-ZSITS International Thermal Science Seminar, Bled, Slovenia, June 11–14, pp. 535–542.
Ren, C. Q. , Tu, M. , and Wang, H. H. , 2007, “An Analytical Model for Heat and Mass Transfer Processes in Internally Cooled or Heated Liquid Desiccant–Air Contact Units,” Int. J. Heat Mass Transfer, 50(17–18), pp. 3545–3555. [CrossRef]
Howell, J. R. , 1987, “Design of Liquid Desiccant Dehumidification and Cooling Systems,” Solar Energy Utilization (NATO ASI, Series), Vol. 129, Springer, Dordrecht, The Netherlands, pp. 374–386. [CrossRef]
Park, M. S. , Howell, J. R. , Vliet, G. C. , and Peterson, J. , 1994, “Numerical and Experimental Results for Coupled Heat and Mass Transfer Between a Desiccant Film and Air in Cross-Flow,” Int. J. Heat Mass Transfer, 37(Suppl. 1), pp. 395–402. [CrossRef]
Kessling, W. , Laevemann, E. , and Kapfhammer, C. , 1998, “Energy Storage for Desiccant Cooling Systems Component Development,” Sol. Energy, 64(4–6), pp. 209–221. [CrossRef]
Pietruschka, D. , Eicker, U. , Huber, M. , and Schumacher, J. , 2006, “Experimental Performance Analysis and Modelling of Liquid Desiccant Cooling Systems for Air Conditioning in Residential Buildings,” Int. J. Refrig., 29(1), pp. 110–124. [CrossRef]
Maron, D. M. , Ingel, G. , and Brauner, N. , 1982, “Wettability and Break-Up of Thin Films on Inclined Surfaces With Continuous and Intermittent Feed,” Desalination, 42(1), pp. 87–96. [CrossRef]
Brauner, N. , Maron, D. M. , and Harel, Z. , 1985, “Wettability, Rewettability and Breakdown of Thin Films of Aqueous Solutions,” Desalination, 52(3), pp. 295–307. [CrossRef]
Miyara, A. , 2000, “Numerical Simulation of Wavy Liquid Film Flowing Down on a Vertical Wall and an Inclined Wall,” Int. J. Therm. Sci., 39(9–11), pp. 1015–1027. [CrossRef]
Zhang, F. , Tang, D. L. , Geng, J. , Wang, Z. X. , and Zhang, Z. B. , 2008, “Study on the Temperature Distribution of Heated Falling Liquid Films,” Phys. D, 237(7), pp. 867–872. [CrossRef]
Morison, K. R. , Worth, Q. A. G. , and O'dea, N. P. , 2006, “Minimum Wetting and Distribution Rates in Falling Film Evaporators,” Food Bioprod. Process., 84(4), pp. 302–310. [CrossRef]
Mesquita, L. C. S. , Harrison, S. J. , and Thomey, D. , 2006, “Modeling of Heat and Mass Transfer in Parallel Plate Liquid-Desiccant Dehumidifiers,” Sol. Energy, 80(11), pp. 1475–1482. [CrossRef]
Qi, R. , Lu, L. , Yang, H. , and Qin, F. , 2013, “Investigation on Wetted Area and Film Thickness for Falling Film Liquid Desiccant Regeneration System,” Appl. Energy, 112, pp. 93–101. [CrossRef]
Soto Francés, V. M. , and Pinazo Ojer, J. M. , 2003, “Validation of a Model for the Absorption Process of H2O(Vap) by a LiBr(Aq) in a Horizontal Tube Bundle Using a Multi-Factorial Analysis,” Int. J. Heat Mass Transfer, 46(17), pp. 3299–3312. [CrossRef]
Giannetti, N. , Rocchetti, A. , Saito, K. , and Yamaguchi, S. , 2016, “Analytical Description of Falling Film Absorption,” Eighth Asian Conference on Refrigeration and Air Conditioning, Taipei, Taiwan, May 15–17, p. 4.
Giannetti, N. , Rocchetti, A. , Yamaguchi, S. , and Saito, K. , 2017, “Analytical Solution of Film Mass-Transfer on a Partially Wetted Absorber Tube,” Int. J. Therm. Sci., 118, pp. 176–186. [CrossRef]
Giannetti, N. , Rocchetti, A. , Yamaguchi, S. , and Saito, K. , 2018, “Heat and Mass Transfer Coefficients of Falling-Film Absorption on a Partially Wetted Horizontal Tube,” Int. J. Therm. Sci., 126, pp. 56–66. [CrossRef]
Giannetti, N. , Moriwaki, R. , Yamaguchi, S. , and Saito, K. , 2018, “Development and Validation of an Analytical Formulation of the Nusselt and Sherwood Numbers on a Partially Wetted Absorber Tube,” Sci. Technol. Built Environ., (in press).
Giannetti, N. , Yamaguchi, S. , and Saito, K. , 2016, “Wetting Behaviour of a Liquid Film on an Internally-Cooled Desiccant Contactor,” Int. J. Heat Mass Transfer, 101, pp. 958–969. [CrossRef]
Yamaguchi, S. , Jeong, J. , Saito, K. , Miyauchi, H. , and Harada, M. , 2011, “Hybrid Liquid Desiccant Air-Conditioning System: Experiments and Simulations,” Appl. Therm. Eng., 31(17–18), pp. 3741–3747. [CrossRef]
Giannetti, N. , Rocchetti, A. , Saito, K. , and Yamaguchi, S. , 2015, “Entropy Parameters for Desiccant Wheel Design,” Appl. Therm. Eng., 75, pp. 826–838. [CrossRef]
Varela, R. J. , Giannetti, N. , Yamaguchi, S. , Saito, K. , Wang, X. M. , and Nakayama, H. , 2018, “Experimental Investigation of the Wetting Characteristics of an Aqueous Ionic Liquid Solution on an Aluminum Fin-Tube Substrate,” Int. J. Refrig., 88, pp. 472–482. [CrossRef]
Andberg, J. W. , and Vliet, G. C. , 1987, “A Simplified Model for Absorption of Vapors Into Liquid Films Flowing Over Cooled Horizontal Tubes,” ASHRAE Trans., 93, pp. 2454–2466.
Hobler, T. , and Czajka, J. , 1964, “Minimal Surface Wetting,” Chem. Stosow., 2(B), p. 145 (in Polish).
Mikielewicz, J. , and Moszynski, J. R. , 1976, “Minimum Thickness of a Liquid Film Flowing Vertically Down a Solid Surface,” Int. J. Heat Mass Transfer, 19(7), pp. 771–776. [CrossRef]
Giannetti, N. , Yamaguchi, S. , and Saito, K. , 2018, “Numerical Simulation of Marangoni Convection Within Absorptive Aqueous Li-Br,” Int. J. Refrig., (in press)
Shimony, A. , Malamud, G. , and Shvarts, D. , 2017, “Density Ratio and Entrainment Effects on Asymptotic Rayleigh–Taylor Instability,” ASME J. Fluids Eng., 140(5), p. 050906. [CrossRef]
Roy, S. , Mandal, L. K. , Khan, M. , and Gupta, M. R. , 2014, “Combined Effect of Viscosity, Surface Tension and Compressibility on Rayleigh-Taylor Bubble Growth Between Two Fluids,” ASME J. Fluids Eng., 136(9), p. 091101. [CrossRef]
Dokowicz, M. , and Nowicki, W. , 2017, “Morphological Hysteresis of Droplets Wetting a Series of Triangular Grooves,” Int. J. Heat Mass Transfer, 115(B), pp. 131–137. [CrossRef]
Roques, J. F. , Dupont, V. , and Thome, J. R. , 2002, “Falling Film Transitions on Plain and Enhanced Tubes,” ASME J. Heat Transfer, 124(3), pp. 491–499. [CrossRef]
Wang, X. , and Jacobi, A. M. , 2014, “A Thermodynamic Basis for Predicting Falling-Film Mode Transitions,” Int. J. Refrig., 43, pp. 123–132. [CrossRef]
Bankoff, S. G. , 1971, “Minimum Thickness of a Draining Liquid Film,” Int. J. Heat Mass Transfer, 14(12), pp. 2143–2146. [CrossRef]
Hartley, D. E. , and Murgatroyd, W. , 1964, “Criteria for the Break-Up of Thin Liquid Layers Flowing Isothermally Over Solid Surface,” Int. J. Heat Mass Transfer, 7(9), pp. 1003–1015. [CrossRef]
El-Genk, M. S. , and Saber, H. H. , 2001, “Minimum Thickness of a Flowing Down Liquid Film on a Vertical Surface,” Int. J. Heat Mass Transfer, 44(15), pp. 2809–2825. [CrossRef]
Doniec, A. , 1991, “Laminar Flow of a Liquid Rivulet Down a Vertical Solid Surface,” Can. J. Chem. Eng., 69(1), pp. 198–202. [CrossRef]
Ijima, T. , and Kuzuoka, T. , 1968, “The Film Breakdown Points on Wetted Wall of Vertical Pipe,” Kagaku Kougaku, 32, p. 264 (in Japanese). [CrossRef]
Köroğlu, B. , Sung Lee, K. , and Park, C. , 2013, “Nano/Micro-Scale Surface Modifications Using Copper Oxidation for Enhancement of Surface Wetting and Falling-Film Heat Transfer,” Int. J. Heat Mass Transfer, 62, pp. 794–804. [CrossRef]
Hoffmann, A. , Ausner, I. , Repke, J. , and Wozny, G. , 2005, “Fluid Dynamics in Multiphase Distillation Processes in Packed Towers,” Comput. Chem. Eng., 29(6), pp. 1433–1437. [CrossRef]
Hoffmann, A. , Ausner, I. , Repke, J. U. , and Wozny, G. , “Detailed Investigation of Multiphase (Gas–Liquid and Gas–Liquid–Liquid) Flow Behaviour on Inclined Plates,” Chem. Eng. Res. Des., 84(2), pp. 147–154. [CrossRef]
Singh, R. K. , Galvin, J. E. , and Sun, X. , 2016, “Three-Dimensional Simulation of Rivulet and Film Flows Over an Inclined Plate: Effects of Solvent Properties and Contact Angle,” Chem. Eng. Sci., 142, pp. 244–257. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Flow diagram of a generic liquid desiccant system, (b) adiabatic contactor for liquid desiccant systems, and (c) internally cooled contactor for hybrid liquid desiccant systems

Grahic Jump Location
Fig. 2

Dimensions of the test section of a vertical fin with cooling water tubes [37]

Grahic Jump Location
Fig. 3

Schematic of the rivulet configuration along a fin-tube contactor

Grahic Jump Location
Fig. 4

Specific energy per unit stream-wise length (J m−2) of rivulet and uniform film configurations as a function of film Reynolds number; T = 34 °C, XIL = 34% for decreasing (a) (θ0 = θ0R) and increasing and (b) (θ0 = θ0A) liquid flow rates

Grahic Jump Location
Fig. 5

Specific energy per unit width and per unit stream-wise length (J m−2) of an ionic liquid flow on a vertical aluminum fin of an internally cooled contactor. T = 34 °C, XIL = 34%, as a function of the wetting ratio WR for increasing: (a) (θ0 = θ0A) and decreasing and (b) (θ0 = θ0R) liquid mass flow rates.

Grahic Jump Location
Fig. 6

Wetting characteristics of pure water on an aluminum fin of the desiccant contactor under analysis; comparison between simulations and experiment; measured values of advancing and receding contact angle from Ref. [42]

Grahic Jump Location
Fig. 7

Comparison between simulations and experiment; simulation results obtained by using experimentally measured values of advancing and receding contact angle

Grahic Jump Location
Fig. 8

Comparison between semitheoretical simulations and experimental data

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In