Abstract

This article presents analysis and control of a wheeled robot that can move spirally inside the pipeline. The wheeled robot considered is composed of two mechanical bodies, a pair of differential-drive wheels, a lifting motor, and a steering wheel. The mechatronic design allows the robot to easily press against the inner wall and spiral along pipelines of arbitrary inclination angles. Kinematic analysis shows how the lead angle of the differential-drive wheels and the steering angle should be coordinated so as to achieve stable spiraling. The steady-state force analysis further gives an analytic expression for the threshold torque needed for supporting the robot at different inclination angles. To ensure successful operation of the robot, four control systems that respectively regulate the spiraling speed, the lifting torque, the steering angle, and the lead angle are devised. Particularly for the lead angle control, it is theoretically proved that the feedback measurement can be obtained by performing algebraic operation on signals from a multi-axis gyro. A prototype robot is constructed and is controlled based on the analysis results. Experiments are conducted to verify the robot’s performance on moving spirally in pipelines of different inclination angles.

References

1.
Roh
,
S.-g.
, and
Choi
,
H. R.
,
2005
, “
Differential-Drive In-Pipe Robot for Moving Inside Urban Gas Pipelines
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
1
17
. 10.1109/TRO.2004.838000
2.
Okamoto
,
J.
, Jr.
,
Adamowski
,
J. C.
,
Tsuzuki
,
M. S.
,
Buiochi
,
F.
, and
Camerini
,
C. S.
,
1999
, “
Autonomous System for Oil Pipelines Inspection
,”
Mechatronics
,
9
(
7
), pp.
731
743
. 10.1016/S0957-4158(99)00031-8
3.
Muramatsu
,
M.
,
Namiki
,
N.
,
Koyama
,
R.
, and
Suga
,
Y.
,
2000
, “
Autonomous Mobile Robot in Pipe for Piping Operations, Proceedings
,”
2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No. 00CH37113)
,
Takamatsu, Japan
,
Oct. 31–Nov. 5
, Vol.
3
, IEEE, pp.
2166
2171
.
4.
Huang
,
H.-P.
,
Yan
,
J.-L.
, and
Cheng
,
T.-H.
,
2009
, “
Development and Fuzzy Control of a Pipe Inspection Robot
,”
IEEE Trans. Indus. Electron.
,
57
(
3
), pp.
1088
1095
. 10.1109/TIE.2009.2031671
5.
Neubauer
,
W.
,
1994
, “
A Spider-Like Robot That Climbs Vertically in Ducts or Pipes
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94)
,
Munich, Germany
,
Sept. 12–16
, Vol.
2
, IEEE, pp.
1178
1185
.
6.
Pfeiffer
,
F.
,
Rossmann
,
T.
, and
Loffler
,
K.
,
2000
, “
Control of a Tube Crawling Machine
,”
2000 2nd International. Conference Control of Oscillations and Chaos. Proceedings (Cat. No. 00TH8521)
,
Saint Petersburg, Russia
,
July 5–7
, Vol.
3
, IEEE,pp.
586
591
.
7.
Qiao
,
J.
,
Shang
,
J.
, and
Goldenberg
,
A.
,
2012
, “
Development of Inchworm In-Pipe Robot Based on Self-Locking Mechanism
,”
IEEE/ASME Trans. Mech.
,
18
(
2
), pp.
799
806
. 10.1109/TMECH.2012.2184294
8.
Roman
,
H. T.
,
Pellegrino
,
B. A.
, and
Sigrist
,
W.
,
1993
, “
Pipe Crawling Inspection Robots: An Overview
,”
IEEE Trans. Energy Conver.
,
8
(
3
), pp.
576
583
. 10.1109/60.257076
9.
Song
,
Z.
,
Ren
,
H.
,
Zhang
,
J.
, and
Ge
,
S. S.
,
2015
, “
Kinematic Analysis and Motion Control of Wheeled Mobile Robots in Cylindrical Workspaces
,”
IEEE Trans. Auto. Sci. Eng.
,
13
(
2
), pp.
1207
1214
. 10.1109/TASE.2015.2503283
11.
Tâche
,
F.
,
Pomerleau
,
F.
,
Caprari
,
G.
,
Siegwart
,
R.
,
Bosse
,
M.
, and
Moser
,
R.
,
2011
, “
Three-Dimensional Localization for the Magnebike Inspection Robot
,”
J. Field Rob.
,
28
(
2
), pp.
180
203
. 10.1002/rob.20361
12.
Lee
,
D.-H.
,
Moon
,
H.
, and
Choi
,
H. R.
,
2011
, “
Autonomous Navigation of In-Pipe Working Robot in Unknown Pipeline Environment
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 10
, IEEE, pp.
1559
1564
.
13.
Yang
,
S. U.
,
Kim
,
H. M.
,
Suh
,
J. S.
,
Choi
,
Y. S.
,
Mun
,
H. M.
,
Park
,
C. M.
,
Moon
,
H.
, and
Choi
,
H. R.
,
2014
, “
Novel Robot Mechanism Capable of 3d Differential Driving Inside Pipelines
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Sept. 14–18
, IEEE, pp.
1944
1949
.
14.
Jun
,
C.
,
Deng
,
Z.
, and
Jiang
,
S.
,
2004
, “
Study of Locomotion Control Characteristics for Six Wheels Driven In-Pipe Robot
,”
2004 IEEE International Conference on Robotics and Biomimetics
,
Shenyang, China
,
Aug. 22–26
, IEEE, pp.
119
124
.
15.
Kakogawa
,
A.
, and
Ma
,
S.
,
2012
, “
Stiffness Design of Springs for a Screw Drive In-Pipe Robot to Pass Through Curved Pipes and Vertical Straight Pipes
,”
Adv. Rob.
,
26
(
3–4
), pp.
253
276
. 10.1163/156855311X614554
16.
Kakogawa
,
A.
,
Nishimura
,
T.
, and
Ma
,
S.
,
2016
, “
Designing Arm Length of a Screw Drive In-Pipe Robot for Climbing Vertically Positioned Bent Pipes
,”
Robotica
,
34
(
2
), p.
306
. 10.1017/S026357471400143X
17.
Fairman
,
F. W.
,
1998
,
Linear Control Theory: The State Space Approach
,
John Wiley & Sons
,
New York
.
18.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer Science & Business Media
,
New York
.
19.
Robotis
,
2020
, “
Mx-106 e-Manual
,” https://emanual.robotis.com/docs/en/dxl/mx/mx-106/, Accessed August 6, 2020.
20.
Robotis
,
2020
, “
Mx-64 e-Manual
,” https://emanual.robotis.com/docs/en/dxl/mx/mx-64/, Accessed August 6, 2020.
21.
STMicroelectronics
,
2015
, “
Lsm9ds1 Datasheet
,” https://www.st.com/resource/en/datasheet/lsm9ds1.pdf, Accessed August 6, 2020.
22.
STMicroelectronics
,
2019
. “
Stm32 Nucleo-64 User Manual
,” https://www.st.com/resource/en/user˙manual/dm00105823-stm32-nucleo-64-boards-mb1136-stmicroelectronics.pdf, Accessed August 6, 2020.
23.
Nichols
,
G.
,
2019
, “
Suction Cup Robot Climbs Non-Magnetic Surfaces
,” https://www.zdnet.com/article/sliding-suction-cup-robot-climbs-non-magnetic-surfaces/, Accessed August 6, 2020.
You do not currently have access to this content.