Abstract

Predicting the states of the surrounding traffic is one of the major problems in automated driving. Maneuvers such as lane change, merge, and exit management could pose challenges in the absence of intervehicular communications and can benefit from driver behavior prediction. Predicting the motion of surrounding vehicles and trajectory planning need to be computationally efficient for real-time implementation. The main goal of this paper is to develop a fast algorithm that predicts the future states of the neighboring vehicles. The proposed workflow employs Monte Carlo Tree Search (MCTS) along with an on-policy learning technique for fast trajectory planning in multi-lane highway traffic scenarios. Also, for the inclusion of behavioral aspects, cognitive hierarchy and level-K game theories are utilized to predict the reaction and decision of the surrounding drivers. Simulation case studies demonstrate that our proposed approach is real-time implementable and can often avoid collision in difficult simulated confrontations.

References

2.
Nellis
,
S.
, and
Chatterjee
,
L.
,
2018
,
Apple Self-Driving Car Rear Ended During Road Testing, Reuters, https://www.reuters.com/article/instant-article/idUKKCN1LG2X1
3.
Kesting
,
A.
,
Treiber
,
M.
, and
Helbing
,
D.
,
2010
, “
Enhanced Intelligent Driver Model to Access the Impact of Driving Strategies on Traffic Capacity
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
368
(
1928
), pp.
4585
4605
. 10.1098/rsta.2010.0084
4.
Wiedemann
,
R.
,
1974
,
Simulation de Stranssenverkehrsflusses
.
Universität Karlsruhe, heft 8. Schriftenreihe des Instituts fur Verkehrswesen (in German language)
.
5.
Newell
,
G. F.
,
2002
, “
A Simplified Car-Following Theory: A Lower Order Model
,”
Trans. Res. Part B: Methodol.
,
36
(
3
), pp.
195
205
. 10.1016/S0191-2615(00)00044-8
6.
Kesting
,
A.
,
Treiber
,
M.
, and
Helbing
,
D.
,
2007
, “
General Lane-Changing Model MOBIL for Car-Following Models
,”
Trans. Res. Record
,
1999
(
1
), pp.
86
94
. 10.3141/1999-10
7.
Yu
,
H.
,
Tseng
,
H. E.
, and
Langari
,
R.
,
2018
, “
A Human-Like Game Theory-Based Controller for Automatic Lane Changing
,”
Trans. Res. Part C: Emerg. Technol.
,
88
, pp.
140
158
. 10.1016/j.trc.2018.01.016
8.
Dickmanns
,
E. D.
, and
Zapp
,
A.
,
1987
, “
Autonomous High Speed Road Vehicle Guidance by Computer Vision
,”
IFAC Proc. Vol.
,
20
(
5
), pp.
221
226
. 10.1016/S1474-6670(17)55320-3
9.
Michels
,
J.
,
Saxena
,
A.
, and
Ng
,
A. Y.
,
2005
, “
High Speed Obstacle Avoidance Using Monocular Vision and Reinforcement Learning
,”
Proceedings of the 22nd International Conference on Machine learning
,
New York, NY
, ACM, pp.
593
600
.
10.
Huval
,
B.
,
Wang
,
T.
,
Tandon
,
S.
,
Kiske
,
J.
,
Song
,
W.
,
Pazhayampallil
,
J.
,
Andriluka
,
M.
,
Rajpurkar
,
P.
,
Migimatsu
,
T.
,
Cheng-Yue
,
R.
, and
Mujica
,
F.
,
2015
, “
An Empirical Evaluation of Deep Learning on Highway Driving
,” arXiv preprint
arXiv:1504.01716
. 2015arXiv150401716H/abstract
11.
Li
,
S.
,
Li
,
N.
,
Girard
,
A.
, and
Kolmanovsky
,
I.
,
2019
, “
Decision Making in Dynamic and Interactive Environments Based on Cognitive Hierarchy Theory, Bayesian Inference, and Predictive Control
,”
2019 IEEE 58th Conference on Decision and Control (CDC)
,
Nice, France
, pp.
2181
2187
. http://dx.doi.org/10.1109/CDC40024.2019.9029646
12.
Kolmanovsky
,
I.
,
Girard
,
A.
,
Yildiz
,
Y.
, and
Li
,
N.
,
2018
, “
Game Theoretic Modeling of Vehicle Interactions At Unsignalized Intersections and Application to Autonomous Vehicle Control
,”
2018 Annual American Control Conference (ACC)
,
Milwaukee, WI
, IEEE, pp.
3215
3220
.
13.
Li
,
N.
,
Oyler
,
D.
,
Zhang
,
M.
,
Yildiz
,
Y.
,
Kolmanovsky
,
I.
, and
Girard
,
A.
,
2017
, “
Game Theoretic Modeling of Driver and Vehicle Interactions for Verification and Validation of Autonomous Vehicle Control Systems
,”
IEEE Trans. Control Syst. Technol.
,
26
(
5
), pp.
1782
1797
. 10.1109/TCST.2017.2723574
14.
Karimi
,
S.
, and
Vahidi
,
A.
,
2020
, “
Receding Horizon Motion Planning for Automated Lane Change and Merge Using Monte Carlo Tree Search and Level-k Game Theory
,”
IEEE, 2020 American Control Conference (ACC)
,
Denver, CO
.
15.
Simon
,
H. A.
,
Eatwell
,
J.
,
Milgate
,
M.
, and
Newman
,
P.
,
1990
,
Bounded Rationality
,
Springer
,
London
, pp.
15
18
.
16.
Simon
,
H. A.
,
1972
, “
Theories of Bounded Rationality
,”
Decision Organiz.
,
1
(
1
), pp.
161
176
.
17.
Bacharach
,
M.
, and
Stahl
,
D. O.
,
2000
, “
Variable-Frame Level-n Theory
,”
Games Econ. Behav.
,
32
(
2
), pp.
220
246
. 10.1006/game.2000.0796
18.
Simon
,
H. A.
,
1957
,
Models of Man; Social and Rational
,
Wiley
.
19.
Williamson
,
O. E.
,
2002
, “
The Theory of the Firm As Governance Structure: From Choice to Contract
,”
J. Econ. Perspect.
,
16
(
3
), pp.
171
195
. 10.1257/089533002760278776
20.
Gigerenzer
,
G.
, and
Selten
,
R.
,
2002
,
Bounded Rationality: The Adaptive Toolbox
,
MIT Press
,
Cambridge, Massachusetts
.
21.
Dollar
,
R. A.
, and
Vahidi
,
A.
,
2018
, “
Predictively Coordinated Vehicle Acceleration and Lane Selection Using Mixed Integer Programming
,”
ASME 2018 Dynamic Systems and Control Conference
,
Atlanta, GA
.
22.
Dollar
,
R. A.
, and
Vahidi
,
A.
,
2019
, “
Automated Vehicles in Hazardous Merging Traffic: A Chance-Constrained Approach
,”
IFAC-Papers OnLine
,
52
(
5
), pp.
218
223
. 10.1016/j.ifacol.2019.09.035
23.
Goulet
,
N.
, and
Ayalew
,
B.
,
2019
, “
Coordinated Model Predictive Control on Multi-lane Roads
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
American Society of Mechanical Engineers
, p.
V003T01A020
.
24.
Metropolis
,
N.
, and
Ulam
,
S.
,
1949
, “
The Monte Carlo Method
,”
J. Am. Stat. Assoc.
,
44
(
247
), pp.
335
341
. 10.1080/01621459.1949.10483310
25.
Metropolis
,
N.
,
1987
, “
The Beginning of the Monte Carlo Method
,”
Los Alamos Sci.
,
15
(
584
), pp.
125
130
.
26.
Allis
,
L. V.
,
1994
,
Searching for Solutions in Games and Artificial Intelligence
,
Ponsen & Looijen Wageningen
,
Maastricht
.
27.
Coulom
,
R.
,
2006
, “
Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search
,”
International Conference on Computers and Games
,
Berlin, Heidelberg
,
Springer
, pp.
72
83
.
28.
Chaslot
,
G.
,
Bakkes
,
S.
,
Szita
,
I.
, and
Spronck
,
P.
,
2008
, “
Monte-Carlo Tree Search: A New Framework for Game AI
,”
AIII Fourth Artificial Intelligence and Interactive Digital Entertainment Conference
,
Maastricht, The Netherlands
.
29.
Browne
,
C. B.
,
Powley
,
E.
,
Whitehouse
,
D.
,
Lucas
,
S. M.
,
Cowling
,
P.
,
Rohlfshagen
,
P.
,
Tavener
,
S.
,
Perez
,
D.
,
Samothrakis
,
S.
, and
Colton
,
S.
,
2012
, “
A Survey of Monte Carlo Tree Search Methods
,”
IEEE Trans. Comput. Intell. AI Games
,
4
(
1
), pp.
1
43
. 10.1109/TCIAIG.2012.2186810
30.
Pepels
,
T.
,
Winands
,
M.
, and
Lanctot
,
M.
,
2014
, “
Real-time Monte Carlo Tree Search in Ms Pac-Man
,”
IEEE Trans. Computat. Intell AI Games
,
6
(
3
), pp.
245
257
. 10.1109/TCIAIG.2013.2291577
31.
Rimmel
,
A.
,
Teytaud
,
O.
,
Lee
,
C.-S.
,
Yen
,
S.-J.
,
Wang
,
M.-H.
, and
Tsai
,
S.-R.
,
2010
, “
Current Frontiers in Computer Go
,”
IEEE Trans. Computat. Intell. AI Games
,
2
(
4
), pp.
229
238
. 10.1109/TCIAIG.2010.2098876
32.
Ciancarini
,
P.
, and
Favini
,
G. P.
,
2010
, “
Monte Carlo Tree Search in Kriegspiel
,”
Artif. Intell.
,
174
(
11
), pp.
670
684
. 10.1016/j.artint.2010.04.017
33.
Gelly
,
S.
, and
Silver
,
D.
,
2011
, “
Monte-Carlo Tree Search and Rapid Action Value Estimation in Computer Go
,”
Artif. Intell.
,
175
(
11
), pp.
1856
1875
. 10.1016/j.artint.2011.03.007
34.
Silver
,
D.
,
Schrittwieser
,
J.
,
Simonyan
,
K.
,
Antonoglou
,
I.
,
Huang
,
A.
,
Guez
,
A.
,
Hubert
,
T.
,
Baker
,
L.
,
Lai
,
M.
,
Bolton
,
A.
,
Chen
,
Y.
,
Lillicrap
,
T.
,
Hui
,
F.
,
Sifre
,
L.
,
Graepel
,
T.
, and
Demis
,
H.
,
2017
, “
Mastering the Game of Go Without Human Knowledge
,”
Nature
,
550
(
7676
), pp.
354
359
. 10.1038/nature24270
35.
Vodopivec
,
T.
,
Samothrakis
,
S.
, and
Ster
,
B.
,
2017
, “
On Monte Carlo Tree Search and Reinforcement Learning
,”
J. Artif. Intell. Res.
,
60
, pp.
881
936
. 10.1613/jair.5507
36.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
, 2nd ed,
The MIT Press
,
Cambridge, MA
.
37.
Bellman
,
R.
,
1966
, “
Dynamic Programming
,”
Science
,
153
(
3731
), pp.
34
37
. 10.1126/science.153.3731.34
38.
Gelly
,
S.
,
Kocsis
,
L.
,
Schoenauer
,
M.
,
Sebag
,
M.
,
Silver
,
D.
,
Szepesvári
,
C.
, and
Teytaud
,
O.
,
2012
, “
The Grand Challenge of Computer Go: Monte Carlo Tree Search and Extensions
,”
Commun. ACM
,
55
(
3
), pp.
106
113
. 10.1145/2093548.2093574
39.
Chaslot
,
G. M. J.
,
Winands
,
M. H.
,
Herik
,
H. J. V. D.
,
Uiterwijk
,
J. W.
, and
Bouzy
,
B.
,
2008
, “
Progressive Strategies for Monte-carlo Tree Search
,”
New Math. Nat. Comput.
,
4
(
3
), pp.
343
357
. 10.1142/S1793005708001094
40.
Kocsis
,
L.
, and
Szepesvári
,
C.
,
2006
, “
Bandit Based Monte-Carlo Planning
,”
European Conference on Machine Learning
,
Berlin, Heidelberg
,
Springer
, pp.
282
293
.
41.
Bouzy
,
B.
,
2005
, “
Move-Pruning Techniques for Monte-Carlo Go
,”
European Conference on Machine Learning
,
Berlin, Heidelberg
,
Springer
, pp.
104
119
.
42.
Bouzy
,
B.
,
Helmstetter
,
B.
,
Jaap Van Den Herik
,
H.
,
Iida
,
H.
, and
Heinz
,
E. A.
,
2004
,
Monte-Carlo Go Developments
,
Springer
,
Boston, MA
, pp.
159
174
.
43.
Oyler
,
D.
,
Li
,
N.
, and
Kolmanovsky
,
I.
,
2016
, “
A Game Theoretical Model of Traffic With Multiple Interacting Drivers for Use in Autonomous Vehicle Development
,”
2016 American Control Conference (ACC)
,
Boston, MA
,
IEEE
, pp.
1705
1710
.
44.
Watkins
,
C. J.
, and
Dayan
,
P.
,
1992
, “
Q-learning
,”
Mach. Learn.
,
8
(
3–4
), pp.
279
292
.
45.
Rummery
,
G. A.
, and
Niranjan
,
M.
,
1994
,
On-line Q-learning Using Connectionist Systems
, Vol.
37
.
University of Cambridge, Department of Engineering Cambridge
,
UK
.
46.
Arad
,
A.
, and
Rubinstein
,
A.
,
2012
, “
The 11-20 Money Request Game: A Level-k Reasoning Study
,”
Am. Econ. Rev.
,
102
(
7
), pp.
3561
73
. 10.1257/aer.102.7.3561
47.
Stahl
,
D.
,
1993
, “
Evolution of Smartn Players
,”
Games Econ. Behav.
,
5
(
4
), pp.
604
617
. 10.1006/game.1993.1033
48.
Camerer
,
C. F.
,
Ho
,
T. H.
, and
Chong
,
J. K.
,
2004
, “
A Cognitive Hierarchy Model of Games
,”
Q. J. Econ.
,
119
(
3
), pp.
861
898
. 10.1162/0033553041502225
49.
Costa-Gomes
,
M.
,
Crawford
,
V. P.
, and
Broseta
,
B.
,
2001
, “
Cognition and Behavior in Normal–form Games: An Experimental Study
,”
Econometrica
,
69
(
5
), pp.
1193
1235
. 10.1111/1468-0262.00239
50.
Nagel
,
R.
,
1995
, “
Unraveling in Guessing Games: An Experimental Study
,”
Am. Economic Rev.
,
85
(
5
), pp.
1313
1326
.
You do not currently have access to this content.